問題を入力...
微分積分 例
ステップ 1
不等式の両辺からを引きます。
ステップ 2
不等式を方程式に変換します。
ステップ 3
ステップ 3.1
をで因数分解します。
ステップ 3.1.1
をで因数分解します。
ステップ 3.1.2
をで因数分解します。
ステップ 3.1.3
をで因数分解します。
ステップ 3.2
をに書き換えます。
ステップ 3.3
因数分解。
ステップ 3.3.1
両項とも完全平方なので、平方の差の公式を利用して、因数分解します。このとき、であり、です。
ステップ 3.3.2
不要な括弧を削除します。
ステップ 4
方程式の左辺の個々の因数がと等しいならば、式全体はと等しくなります。
ステップ 5
がに等しいとします。
ステップ 6
ステップ 6.1
がに等しいとします。
ステップ 6.2
方程式の両辺からを引きます。
ステップ 7
ステップ 7.1
がに等しいとします。
ステップ 7.2
方程式の両辺にを足します。
ステップ 8
最終解はを真にするすべての値です。
ステップ 9
各根を利用して検定区間を作成します。
ステップ 10
ステップ 10.1
区間の値を検定し、この値によって不等式が真になるか確認します。
ステップ 10.1.1
区間の値を選び、この値によって元の不等式が真になるか確認します。
ステップ 10.1.2
を元の不等式ので置き換えます。
ステップ 10.1.3
左辺は右辺より小さいです。つまり、与えられた文は常に真です。
True
True
ステップ 10.2
区間の値を検定し、この値によって不等式が真になるか確認します。
ステップ 10.2.1
区間の値を選び、この値によって元の不等式が真になるか確認します。
ステップ 10.2.2
を元の不等式ので置き換えます。
ステップ 10.2.3
左辺は右辺より小さくありません。つまり、与えられた文は偽です。
False
False
ステップ 10.3
区間の値を検定し、この値によって不等式が真になるか確認します。
ステップ 10.3.1
区間の値を選び、この値によって元の不等式が真になるか確認します。
ステップ 10.3.2
を元の不等式ので置き換えます。
ステップ 10.3.3
左辺は右辺より小さいです。つまり、与えられた文は常に真です。
True
True
ステップ 10.4
区間の値を検定し、この値によって不等式が真になるか確認します。
ステップ 10.4.1
区間の値を選び、この値によって元の不等式が真になるか確認します。
ステップ 10.4.2
を元の不等式ので置き換えます。
ステップ 10.4.3
左辺は右辺より小さくありません。つまり、与えられた文は偽です。
False
False
ステップ 10.5
区間を比較して、どちらが元の不等式を満たすか判定します。
真
偽
真
偽
真
偽
真
偽
ステップ 11
解はすべての真の区間からなります。
または
ステップ 12
不等式を区間記号に変換します。
ステップ 13