問題を入力...
微分積分 例
ステップ 1
がに近づいたら、極限で極限の法則の積を利用して極限を分割します。
ステップ 2
正弦が連続なので、極限を三角関数の中に移動させます。
ステップ 3
余弦が連続なので、極限を三角関数の中に移動させます。
ステップ 4
の項はに対して一定なので、極限の外に移動させます。
ステップ 5
ステップ 5.1
をに代入し、の極限値を求めます。
ステップ 5.2
をに代入し、の極限値を求めます。
ステップ 6
ステップ 6.1
分子を簡約します。
ステップ 6.1.1
の厳密値はです。
ステップ 6.1.2
にをかけます。
ステップ 6.1.3
の厳密値はです。
ステップ 6.2
をで因数分解します。
ステップ 6.2.1
を乗します。
ステップ 6.2.2
をで因数分解します。
ステップ 6.2.3
をで因数分解します。
ステップ 6.2.4
をで因数分解します。
ステップ 6.3
にをかけます。
ステップ 6.4
をで割ります。