微分積分 例

ロピタルの定理を利用し値を求める xが(cos(x))/(1-sin(x))のpi/2に近づく極限
ステップ 1
分子と分母の極限値を求めます。
タップして手順をさらに表示してください…
ステップ 1.1
分子と分母の極限値をとります。
ステップ 1.2
分子の極限値を求めます。
タップして手順をさらに表示してください…
ステップ 1.2.1
余弦が連続なので、極限を三角関数の中に移動させます。
ステップ 1.2.2
に代入し、の極限値を求めます。
ステップ 1.2.3
の厳密値はです。
ステップ 1.3
分母の極限値を求めます。
タップして手順をさらに表示してください…
ステップ 1.3.1
極限を求めます。
タップして手順をさらに表示してください…
ステップ 1.3.1.1
に近づいたら、極限で極限の法則の和を利用して分解します。
ステップ 1.3.1.2
に近づくと定数であるの極限値を求めます。
ステップ 1.3.1.3
正弦が連続なので、極限を三角関数の中に移動させます。
ステップ 1.3.2
に代入し、の極限値を求めます。
ステップ 1.3.3
答えを簡約します。
タップして手順をさらに表示してください…
ステップ 1.3.3.1
各項を簡約します。
タップして手順をさらに表示してください…
ステップ 1.3.3.1.1
の厳密値はです。
ステップ 1.3.3.1.2
をかけます。
ステップ 1.3.3.2
からを引きます。
ステップ 1.3.3.3
による除算を含む式です。式は未定義です。
未定義
ステップ 1.3.4
による除算を含む式です。式は未定義です。
未定義
ステップ 1.4
による除算を含む式です。式は未定義です。
未定義
ステップ 2
は不定形があるので、ロピタルの定理を当てはめます。ロピタルの定理は、関数の商の極限は微分係数の商の極限に等しいとしています。
ステップ 3
分子と分母の微分係数を求めます。
タップして手順をさらに表示してください…
ステップ 3.1
分母と分子を微分します。
ステップ 3.2
に関するの微分係数はです。
ステップ 3.3
総和則では、に関する積分はです。
ステップ 3.4
について定数なので、についての微分係数はです。
ステップ 3.5
の値を求めます。
タップして手順をさらに表示してください…
ステップ 3.5.1
に対して定数なので、に対するの微分係数はです。
ステップ 3.5.2
に関するの微分係数はです。
ステップ 3.6
からを引きます。
ステップ 4
2つの負の値を割ると正の値になります。
ステップ 5
に変換します。
ステップ 6
左側極限を考えます。
ステップ 7
値がに左から近づくとき、関数の値は境界なく増加します。
ステップ 8
右側極限を考えます。
ステップ 9
値がに右から近づくとき、関数の値は境界なく減少します。
ステップ 10
左側極限と右側極限が等しくないので、極限はありません。