微分積分 例

Найти dS/dA s=180A-0.30A^3
ステップ 1
方程式の両辺を微分します。
ステップ 2
について定数なので、についての微分係数はです。
ステップ 3
方程式の右辺を微分します。
タップして手順をさらに表示してください…
ステップ 3.1
総和則では、に関する積分はです。
ステップ 3.2
の値を求めます。
タップして手順をさらに表示してください…
ステップ 3.2.1
に対して定数なので、に対するの微分係数はです。
ステップ 3.2.2
のとき、であるというべき乗則を使って微分します。
ステップ 3.2.3
をかけます。
ステップ 3.3
の値を求めます。
タップして手順をさらに表示してください…
ステップ 3.3.1
に対して定数なので、に対するの微分係数はです。
ステップ 3.3.2
のとき、であるというべき乗則を使って微分します。
ステップ 3.3.3
をかけます。
ステップ 3.4
項を並べ替えます。
ステップ 4
左辺と右辺を等しくし、式を作り変えます。
ステップ 5
について解きます。
タップして手順をさらに表示してください…
ステップ 5.1
が方程式の右辺にあるので、両辺を入れ替えると左辺になります。
ステップ 5.2
方程式の両辺からを引きます。
ステップ 5.3
の各項をで割り、簡約します。
タップして手順をさらに表示してください…
ステップ 5.3.1
の各項をで割ります。
ステップ 5.3.2
左辺を簡約します。
タップして手順をさらに表示してください…
ステップ 5.3.2.1
の共通因数を約分します。
タップして手順をさらに表示してください…
ステップ 5.3.2.1.1
共通因数を約分します。
ステップ 5.3.2.1.2
で割ります。
ステップ 5.3.3
右辺を簡約します。
タップして手順をさらに表示してください…
ステップ 5.3.3.1
で割ります。
ステップ 5.4
Take the specified root of both sides of the equation to eliminate the exponent on the left side.
ステップ 5.5
を簡約します。
タップして手順をさらに表示してください…
ステップ 5.5.1
に書き換えます。
タップして手順をさらに表示してください…
ステップ 5.5.1.1
で因数分解します。
ステップ 5.5.1.2
に書き換えます。
ステップ 5.5.2
累乗根の下から項を取り出します。
ステップ 5.6
完全解は、解の正と負の部分の両方の計算結果です。
タップして手順をさらに表示してください…
ステップ 5.6.1
まず、の正の数を利用し、1番目の解を求めます。
ステップ 5.6.2
次に、の負の値を利用し。2番目の解を求めます。
ステップ 5.6.3
完全解は、解の正と負の部分の両方の計算結果です。
ステップ 6
で置き換えます。
ステップ 7
結果は複数の形で表すことができます。
完全形:
10進法形式: