微分積分 例

Найти 2nd-ю производную f(x)=csc(x)
ステップ 1
一次導関数を求めます。
タップして手順をさらに表示してください…
ステップ 1.1
に関するの微分係数はです。
ステップ 1.2
の因数を並べ替えます。
ステップ 2
二次導関数を求めます。
タップして手順をさらに表示してください…
ステップ 2.1
に対して定数なので、に対するの微分係数はです。
ステップ 2.2
およびのとき、であるという積の法則を使って微分します。
ステップ 2.3
に関するの微分係数はです。
ステップ 2.4
乗します。
ステップ 2.5
乗します。
ステップ 2.6
べき乗則を利用して指数を組み合わせます。
ステップ 2.7
をたし算します。
ステップ 2.8
に関するの微分係数はです。
ステップ 2.9
乗します。
ステップ 2.10
べき乗則を利用して指数を組み合わせます。
ステップ 2.11
をたし算します。
ステップ 2.12
簡約します。
タップして手順をさらに表示してください…
ステップ 2.12.1
分配則を当てはめます。
ステップ 2.12.2
項をまとめます。
タップして手順をさらに表示してください…
ステップ 2.12.2.1
をかけます。
ステップ 2.12.2.2
をかけます。
ステップ 2.12.2.3
をかけます。
ステップ 2.12.2.4
をかけます。
ステップ 2.12.3
項を並べ替えます。
ステップ 3
三次導関数を求めます。
タップして手順をさらに表示してください…
ステップ 3.1
総和則では、に関する積分はです。
ステップ 3.2
の値を求めます。
タップして手順をさらに表示してください…
ステップ 3.2.1
およびのとき、であるという積の法則を使って微分します。
ステップ 3.2.2
に関するの微分係数はです。
ステップ 3.2.3
およびのとき、であるという連鎖律を使って微分します。
タップして手順をさらに表示してください…
ステップ 3.2.3.1
連鎖律を当てはめるために、とします。
ステップ 3.2.3.2
のとき、であるというべき乗則を使って微分します。
ステップ 3.2.3.3
のすべての発生をで置き換えます。
ステップ 3.2.4
に関するの微分係数はです。
ステップ 3.2.5
指数を足してを掛けます。
タップして手順をさらに表示してください…
ステップ 3.2.5.1
を移動させます。
ステップ 3.2.5.2
をかけます。
タップして手順をさらに表示してください…
ステップ 3.2.5.2.1
乗します。
ステップ 3.2.5.2.2
べき乗則を利用して指数を組み合わせます。
ステップ 3.2.5.3
をたし算します。
ステップ 3.2.6
をかけます。
ステップ 3.2.7
乗します。
ステップ 3.2.8
べき乗則を利用して指数を組み合わせます。
ステップ 3.2.9
をたし算します。
ステップ 3.3
の値を求めます。
タップして手順をさらに表示してください…
ステップ 3.3.1
およびのとき、であるという連鎖律を使って微分します。
タップして手順をさらに表示してください…
ステップ 3.3.1.1
連鎖律を当てはめるために、とします。
ステップ 3.3.1.2
のとき、であるというべき乗則を使って微分します。
ステップ 3.3.1.3
のすべての発生をで置き換えます。
ステップ 3.3.2
に関するの微分係数はです。
ステップ 3.3.3
をかけます。
ステップ 3.3.4
乗します。
ステップ 3.3.5
べき乗則を利用して指数を組み合わせます。
ステップ 3.3.6
をたし算します。
ステップ 3.4
簡約します。
タップして手順をさらに表示してください…
ステップ 3.4.1
項をまとめます。
タップして手順をさらに表示してください…
ステップ 3.4.1.1
の因数を並べ替えます。
ステップ 3.4.1.2
からを引きます。
ステップ 3.4.2
項を並べ替えます。
ステップ 4
四次導関数を求めます。
タップして手順をさらに表示してください…
ステップ 4.1
総和則では、に関する積分はです。
ステップ 4.2
の値を求めます。
タップして手順をさらに表示してください…
ステップ 4.2.1
に対して定数なので、に対するの微分係数はです。
ステップ 4.2.2
およびのとき、であるという積の法則を使って微分します。
ステップ 4.2.3
に関するの微分係数はです。
ステップ 4.2.4
およびのとき、であるという連鎖律を使って微分します。
タップして手順をさらに表示してください…
ステップ 4.2.4.1
連鎖律を当てはめるために、とします。
ステップ 4.2.4.2
のとき、であるというべき乗則を使って微分します。
ステップ 4.2.4.3
のすべての発生をで置き換えます。
ステップ 4.2.5
に関するの微分係数はです。
ステップ 4.2.6
指数を足してを掛けます。
タップして手順をさらに表示してください…
ステップ 4.2.6.1
を移動させます。
ステップ 4.2.6.2
をかけます。
タップして手順をさらに表示してください…
ステップ 4.2.6.2.1
乗します。
ステップ 4.2.6.2.2
べき乗則を利用して指数を組み合わせます。
ステップ 4.2.6.3
をたし算します。
ステップ 4.2.7
をかけます。
ステップ 4.2.8
乗します。
ステップ 4.2.9
べき乗則を利用して指数を組み合わせます。
ステップ 4.2.10
をたし算します。
ステップ 4.3
の値を求めます。
タップして手順をさらに表示してください…
ステップ 4.3.1
に対して定数なので、に対するの微分係数はです。
ステップ 4.3.2
およびのとき、であるという積の法則を使って微分します。
ステップ 4.3.3
に関するの微分係数はです。
ステップ 4.3.4
およびのとき、であるという連鎖律を使って微分します。
タップして手順をさらに表示してください…
ステップ 4.3.4.1
連鎖律を当てはめるために、とします。
ステップ 4.3.4.2
のとき、であるというべき乗則を使って微分します。
ステップ 4.3.4.3
のすべての発生をで置き換えます。
ステップ 4.3.5
に関するの微分係数はです。
ステップ 4.3.6
指数を足してを掛けます。
タップして手順をさらに表示してください…
ステップ 4.3.6.1
を移動させます。
ステップ 4.3.6.2
べき乗則を利用して指数を組み合わせます。
ステップ 4.3.6.3
をたし算します。
ステップ 4.3.7
の左に移動させます。
ステップ 4.3.8
に書き換えます。
ステップ 4.3.9
をかけます。
ステップ 4.3.10
乗します。
ステップ 4.3.11
べき乗則を利用して指数を組み合わせます。
ステップ 4.3.12
をたし算します。
ステップ 4.3.13
乗します。
ステップ 4.3.14
乗します。
ステップ 4.3.15
べき乗則を利用して指数を組み合わせます。
ステップ 4.3.16
をたし算します。
ステップ 4.4
簡約します。
タップして手順をさらに表示してください…
ステップ 4.4.1
分配則を当てはめます。
ステップ 4.4.2
分配則を当てはめます。
ステップ 4.4.3
項をまとめます。
タップして手順をさらに表示してください…
ステップ 4.4.3.1
をかけます。
ステップ 4.4.3.2
をかけます。
ステップ 4.4.3.3
をかけます。
ステップ 4.4.3.4
をかけます。
ステップ 4.4.3.5
をかけます。
ステップ 4.4.3.6
の因数を並べ替えます。
ステップ 4.4.3.7
をたし算します。
ステップ 5
に関するの四次導関数はです。