問題を入力...
微分積分 例
,
ステップ 1
ステップ 1.1
一次導関数を求めます。
ステップ 1.1.1
一次導関数を求めます。
ステップ 1.1.1.1
はに対して定数なので、に対するの微分係数はです。
ステップ 1.1.1.2
をに書き換えます。
ステップ 1.1.1.3
のとき、はであるというべき乗則を使って微分します。
ステップ 1.1.1.4
にをかけます。
ステップ 1.1.1.5
簡約します。
ステップ 1.1.1.5.1
負の指数法則を利用して式を書き換えます。
ステップ 1.1.1.5.2
項をまとめます。
ステップ 1.1.1.5.2.1
とをまとめます。
ステップ 1.1.1.5.2.2
分数の前に負数を移動させます。
ステップ 1.1.2
に関するの一次導関数はです。
ステップ 1.2
一次導関数をと等しくし、次に方程式を解きます。
ステップ 1.2.1
一次導関数をに等しくします。
ステップ 1.2.2
分子を0に等しくします。
ステップ 1.2.3
なので、解はありません。
解がありません
解がありません
ステップ 1.3
微分係数が未定義になる値を求めます。
ステップ 1.3.1
の分母をに等しいとして、式が未定義である場所を求めます。
ステップ 1.3.2
について解きます。
ステップ 1.3.2.1
方程式の両辺の指定した根をとり、左辺の指数を消去します。
ステップ 1.3.2.2
を簡約します。
ステップ 1.3.2.2.1
をに書き換えます。
ステップ 1.3.2.2.2
正の実数と仮定して、累乗根の下から項を取り出します。
ステップ 1.3.2.2.3
プラスマイナスはです。
ステップ 1.4
微分係数がまたは未定義のとき、各におけるの値を求めます。
ステップ 1.4.1
での値を求めます。
ステップ 1.4.1.1
をに代入します。
ステップ 1.4.1.2
による除算を含む式です。式は未定義です。
未定義
未定義
未定義
ステップ 1.5
微分係数がまたは未定義であるという、元の問題の定義域にの値はありません。
臨界点が見つかりません
臨界点が見つかりません
ステップ 2
ステップ 2.1
での値を求めます。
ステップ 2.1.1
をに代入します。
ステップ 2.1.2
をで割ります。
ステップ 2.2
点のすべてを一覧にします。
ステップ 3
一次導関数がに等しくなるの値がないので、極値はありません。
極値がありません
ステップ 4
の各値に対して求めたの値を比較し、与えられた区間での最大限と最小限を決定します。最大限は最も高いの値で発生し、最小値は最も低いの値で発生します。
最大値:
絶対最小値はありません
ステップ 5