微分積分 例

区間から絶対最大値と絶対最小値を求める f(x)=x^a(1-x)^b , 0<=x<=1
,
ステップ 1
臨界点を求めます。
タップして手順をさらに表示してください…
ステップ 1.1
一次導関数を求めます。
タップして手順をさらに表示してください…
ステップ 1.1.1
一次導関数を求めます。
タップして手順をさらに表示してください…
ステップ 1.1.1.1
およびのとき、であるという積の法則を使って微分します。
ステップ 1.1.1.2
およびのとき、であるという連鎖律を使って微分します。
タップして手順をさらに表示してください…
ステップ 1.1.1.2.1
連鎖律を当てはめるために、とします。
ステップ 1.1.1.2.2
のとき、であるというべき乗則を使って微分します。
ステップ 1.1.1.2.3
のすべての発生をで置き換えます。
ステップ 1.1.1.3
微分します。
タップして手順をさらに表示してください…
ステップ 1.1.1.3.1
総和則では、に関する積分はです。
ステップ 1.1.1.3.2
について定数なので、についての微分係数はです。
ステップ 1.1.1.3.3
をたし算します。
ステップ 1.1.1.3.4
に対して定数なので、に対するの微分係数はです。
ステップ 1.1.1.3.5
のとき、であるというべき乗則を使って微分します。
ステップ 1.1.1.3.6
式を簡約します。
タップして手順をさらに表示してください…
ステップ 1.1.1.3.6.1
をかけます。
ステップ 1.1.1.3.6.2
の左に移動させます。
ステップ 1.1.1.3.6.3
に書き換えます。
ステップ 1.1.1.3.7
のとき、であるというべき乗則を使って微分します。
ステップ 1.1.1.4
簡約します。
タップして手順をさらに表示してください…
ステップ 1.1.1.4.1
項を並べ替えます。
ステップ 1.1.1.4.2
の因数を並べ替えます。
ステップ 1.1.2
に関するの一次導関数はです。
ステップ 1.2
一次導関数をに等しくします。
ステップ 1.3
微分係数が未定義になる値を求めます。
タップして手順をさらに表示してください…
ステップ 1.3.1
式の定義域は、式が未定義の場合を除き、すべての実数です。この場合、式が未定義になるような実数はありません。
ステップ 1.4
微分係数がまたは未定義であるという、元の問題の定義域にの値はありません。
臨界点が見つかりません
臨界点が見つかりません
ステップ 2
含まれる端点における値を求めます。
タップして手順をさらに表示してください…
ステップ 2.1
での値を求めます。
タップして手順をさらに表示してください…
ステップ 2.1.1
に代入します。
ステップ 2.1.2
簡約します。
タップして手順をさらに表示してください…
ステップ 2.1.2.1
からを引きます。
ステップ 2.1.2.2
1のすべての数の累乗は1です。
ステップ 2.1.2.3
をかけます。
ステップ 2.2
での値を求めます。
タップして手順をさらに表示してください…
ステップ 2.2.1
に代入します。
ステップ 2.2.2
簡約します。
タップして手順をさらに表示してください…
ステップ 2.2.2.1
1のすべての数の累乗は1です。
ステップ 2.2.2.2
をかけます。
ステップ 2.2.2.3
をかけます。
ステップ 2.2.2.4
からを引きます。
ステップ 2.3
点のすべてを一覧にします。
ステップ 3
の各値に対して求めたの値を比較し、与えられた区間での最大限と最小限を決定します。最大限は最も高いの値で発生し、最小値は最も低いの値で発生します。
絶対最大値はありません
絶対最小値はありません
ステップ 4