微分積分 例

区間から絶対最大値と絶対最小値を求める f(x) = cube root of x-8-1 ; [0,7]
;
ステップ 1
臨界点を求めます。
タップして手順をさらに表示してください…
ステップ 1.1
一次導関数を求めます。
タップして手順をさらに表示してください…
ステップ 1.1.1
一次導関数を求めます。
タップして手順をさらに表示してください…
ステップ 1.1.1.1
総和則では、に関する積分はです。
ステップ 1.1.1.2
の値を求めます。
タップして手順をさらに表示してください…
ステップ 1.1.1.2.1
を利用し、に書き換えます。
ステップ 1.1.1.2.2
およびのとき、であるという連鎖律を使って微分します。
タップして手順をさらに表示してください…
ステップ 1.1.1.2.2.1
連鎖律を当てはめるために、とします。
ステップ 1.1.1.2.2.2
のとき、であるというべき乗則を使って微分します。
ステップ 1.1.1.2.2.3
のすべての発生をで置き換えます。
ステップ 1.1.1.2.3
総和則では、に関する積分はです。
ステップ 1.1.1.2.4
のとき、であるというべき乗則を使って微分します。
ステップ 1.1.1.2.5
について定数なので、についての微分係数はです。
ステップ 1.1.1.2.6
を公分母のある分数として書くために、を掛けます。
ステップ 1.1.1.2.7
をまとめます。
ステップ 1.1.1.2.8
公分母の分子をまとめます。
ステップ 1.1.1.2.9
分子を簡約します。
タップして手順をさらに表示してください…
ステップ 1.1.1.2.9.1
をかけます。
ステップ 1.1.1.2.9.2
からを引きます。
ステップ 1.1.1.2.10
分数の前に負数を移動させます。
ステップ 1.1.1.2.11
をたし算します。
ステップ 1.1.1.2.12
をまとめます。
ステップ 1.1.1.2.13
をかけます。
ステップ 1.1.1.2.14
負の指数法則を利用してを分母に移動させます。
ステップ 1.1.1.3
定数の規則を使って微分します。
タップして手順をさらに表示してください…
ステップ 1.1.1.3.1
について定数なので、についての微分係数はです。
ステップ 1.1.1.3.2
をたし算します。
ステップ 1.1.2
に関するの一次導関数はです。
ステップ 1.2
一次導関数をと等しくし、次に方程式を解きます。
タップして手順をさらに表示してください…
ステップ 1.2.1
一次導関数をに等しくします。
ステップ 1.2.2
分子を0に等しくします。
ステップ 1.2.3
なので、解はありません。
解がありません
解がありません
ステップ 1.3
微分係数が未定義になる値を求めます。
タップして手順をさらに表示してください…
ステップ 1.3.1
法則を当てはめ、累乗法を根で書き換えます。
ステップ 1.3.2
の分母をに等しいとして、式が未定義である場所を求めます。
ステップ 1.3.3
について解きます。
タップして手順をさらに表示してください…
ステップ 1.3.3.1
方程式の左辺から根を削除するため、方程式の両辺を3乗します。
ステップ 1.3.3.2
方程式の各辺を簡約します。
タップして手順をさらに表示してください…
ステップ 1.3.3.2.1
を利用し、に書き換えます。
ステップ 1.3.3.2.2
左辺を簡約します。
タップして手順をさらに表示してください…
ステップ 1.3.3.2.2.1
を簡約します。
タップして手順をさらに表示してください…
ステップ 1.3.3.2.2.1.1
積の法則をに当てはめます。
ステップ 1.3.3.2.2.1.2
乗します。
ステップ 1.3.3.2.2.1.3
の指数を掛けます。
タップして手順をさらに表示してください…
ステップ 1.3.3.2.2.1.3.1
べき乗則を当てはめて、指数をかけ算します。
ステップ 1.3.3.2.2.1.3.2
の共通因数を約分します。
タップして手順をさらに表示してください…
ステップ 1.3.3.2.2.1.3.2.1
共通因数を約分します。
ステップ 1.3.3.2.2.1.3.2.2
式を書き換えます。
ステップ 1.3.3.2.3
右辺を簡約します。
タップして手順をさらに表示してください…
ステップ 1.3.3.2.3.1
を正数乗し、を得ます。
ステップ 1.3.3.3
について解きます。
タップして手順をさらに表示してください…
ステップ 1.3.3.3.1
の各項をで割り、簡約します。
タップして手順をさらに表示してください…
ステップ 1.3.3.3.1.1
の各項をで割ります。
ステップ 1.3.3.3.1.2
左辺を簡約します。
タップして手順をさらに表示してください…
ステップ 1.3.3.3.1.2.1
の共通因数を約分します。
タップして手順をさらに表示してください…
ステップ 1.3.3.3.1.2.1.1
共通因数を約分します。
ステップ 1.3.3.3.1.2.1.2
で割ります。
ステップ 1.3.3.3.1.3
右辺を簡約します。
タップして手順をさらに表示してください…
ステップ 1.3.3.3.1.3.1
で割ります。
ステップ 1.3.3.3.2
に等しいとします。
ステップ 1.3.3.3.3
方程式の両辺にを足します。
ステップ 1.4
微分係数がまたは未定義のとき、各におけるの値を求めます。
タップして手順をさらに表示してください…
ステップ 1.4.1
での値を求めます。
タップして手順をさらに表示してください…
ステップ 1.4.1.1
に代入します。
ステップ 1.4.1.2
簡約します。
タップして手順をさらに表示してください…
ステップ 1.4.1.2.1
各項を簡約します。
タップして手順をさらに表示してください…
ステップ 1.4.1.2.1.1
からを引きます。
ステップ 1.4.1.2.1.2
に書き換えます。
ステップ 1.4.1.2.1.3
実数と仮定して、累乗根の下から項を取り出します。
ステップ 1.4.1.2.2
からを引きます。
ステップ 1.4.2
点のすべてを一覧にします。
ステップ 2
区間上にない点を除外します。
ステップ 3
含まれる端点における値を求めます。
タップして手順をさらに表示してください…
ステップ 3.1
での値を求めます。
タップして手順をさらに表示してください…
ステップ 3.1.1
に代入します。
ステップ 3.1.2
簡約します。
タップして手順をさらに表示してください…
ステップ 3.1.2.1
各項を簡約します。
タップして手順をさらに表示してください…
ステップ 3.1.2.1.1
からを引きます。
ステップ 3.1.2.1.2
に書き換えます。
ステップ 3.1.2.1.3
実数と仮定して、累乗根の下から項を取り出します。
ステップ 3.1.2.2
からを引きます。
ステップ 3.2
での値を求めます。
タップして手順をさらに表示してください…
ステップ 3.2.1
に代入します。
ステップ 3.2.2
簡約します。
タップして手順をさらに表示してください…
ステップ 3.2.2.1
各項を簡約します。
タップして手順をさらに表示してください…
ステップ 3.2.2.1.1
からを引きます。
ステップ 3.2.2.1.2
に書き換えます。
ステップ 3.2.2.1.3
実数と仮定して、累乗根の下から項を取り出します。
ステップ 3.2.2.2
からを引きます。
ステップ 3.3
点のすべてを一覧にします。
ステップ 4
の各値に対して求めたの値を比較し、与えられた区間での最大限と最小限を決定します。最大限は最も高いの値で発生し、最小値は最も低いの値で発生します。
最大値:
最小値:
ステップ 5