微分積分 例

Найти касательную в точке x=π y=2-sin(x) at x=pi
at
ステップ 1
の値を求めます。
タップして手順をさらに表示してください…
ステップ 1.1
に代入します。
ステップ 1.2
について解きます。
タップして手順をさらに表示してください…
ステップ 1.2.1
括弧を削除します。
ステップ 1.2.2
を簡約します。
タップして手順をさらに表示してください…
ステップ 1.2.2.1
各項を簡約します。
タップして手順をさらに表示してください…
ステップ 1.2.2.1.1
第一象限で等しい三角の値を持つ角度を求め、参照角を当てはめます。
ステップ 1.2.2.1.2
の厳密値はです。
ステップ 1.2.2.1.3
をかけます。
ステップ 1.2.2.2
をたし算します。
ステップ 2
一次導関数を求めにおける値を求め、接線の傾きを求めます。
タップして手順をさらに表示してください…
ステップ 2.1
微分します。
タップして手順をさらに表示してください…
ステップ 2.1.1
総和則では、に関する積分はです。
ステップ 2.1.2
について定数なので、についての微分係数はです。
ステップ 2.2
の値を求めます。
タップして手順をさらに表示してください…
ステップ 2.2.1
に対して定数なので、に対するの微分係数はです。
ステップ 2.2.2
に関するの微分係数はです。
ステップ 2.3
からを引きます。
ステップ 2.4
で微分係数を求めます。
ステップ 2.5
簡約します。
タップして手順をさらに表示してください…
ステップ 2.5.1
第一象限で等しい三角の値を持つ角度を求め、参照角を当てはめます。余弦は第二象限で負であるため、式を負にします。
ステップ 2.5.2
の厳密値はです。
ステップ 2.5.3
を掛けます。
タップして手順をさらに表示してください…
ステップ 2.5.3.1
をかけます。
ステップ 2.5.3.2
をかけます。
ステップ 3
傾きと点の値を点と傾きの公式に代入し、について解きます。
タップして手順をさらに表示してください…
ステップ 3.1
傾きと与えられた点を利用して、点傾き型に代入します。それは傾きの方程式から導かれます。
ステップ 3.2
方程式を簡約し点傾き型にします。
ステップ 3.3
について解きます。
タップして手順をさらに表示してください…
ステップ 3.3.1
をかけます。
ステップ 3.3.2
方程式の両辺にを足します。
ステップ 4