微分積分 例

u置換を用いた積分 pi/6からxに対してsin(2x)^5cos(2x)のpi/2までの積分
ステップ 1
とします。次にすると、です。を利用して書き換えます。
タップして手順をさらに表示してください…
ステップ 1.1
とします。を求めます。
タップして手順をさらに表示してください…
ステップ 1.1.1
を微分します。
ステップ 1.1.2
およびのとき、であるという連鎖律を使って微分します。
タップして手順をさらに表示してください…
ステップ 1.1.2.1
連鎖律を当てはめるために、とします。
ステップ 1.1.2.2
に関するの微分係数はです。
ステップ 1.1.2.3
のすべての発生をで置き換えます。
ステップ 1.1.3
微分します。
タップして手順をさらに表示してください…
ステップ 1.1.3.1
に対して定数なので、に対するの微分係数はです。
ステップ 1.1.3.2
のとき、であるというべき乗則を使って微分します。
ステップ 1.1.3.3
式を簡約します。
タップして手順をさらに表示してください…
ステップ 1.1.3.3.1
をかけます。
ステップ 1.1.3.3.2
の左に移動させます。
ステップ 1.2
に下限値を代入します。
ステップ 1.3
簡約します。
タップして手順をさらに表示してください…
ステップ 1.3.1
の共通因数を約分します。
タップして手順をさらに表示してください…
ステップ 1.3.1.1
で因数分解します。
ステップ 1.3.1.2
共通因数を約分します。
ステップ 1.3.1.3
式を書き換えます。
ステップ 1.3.2
の厳密値はです。
ステップ 1.4
に上限値を代入します。
ステップ 1.5
簡約します。
タップして手順をさらに表示してください…
ステップ 1.5.1
の共通因数を約分します。
タップして手順をさらに表示してください…
ステップ 1.5.1.1
共通因数を約分します。
ステップ 1.5.1.2
式を書き換えます。
ステップ 1.5.2
第一象限で等しい三角の値を持つ角度を求め、参照角を当てはめます。
ステップ 1.5.3
の厳密値はです。
ステップ 1.6
について求めた値は定積分を求めるために利用します。
ステップ 1.7
、および新たな積分の極限を利用して問題を書き換えます。
ステップ 2
をまとめます。
ステップ 3
に対して定数なので、を積分の外に移動させます。
ステップ 4
べき乗則では、に関する積分はです。
ステップ 5
式を簡約します。
タップして手順をさらに表示してください…
ステップ 5.1
およびの値を求めます。
ステップ 5.2
式を簡約します。
タップして手順をさらに表示してください…
ステップ 5.2.1
を正数乗し、を得ます。
ステップ 5.2.2
をかけます。
ステップ 5.2.3
からを引きます。
ステップ 5.3
簡約します。
タップして手順をさらに表示してください…
ステップ 5.3.1
をかけます。
ステップ 5.3.2
をかけます。
ステップ 6
結果は複数の形で表すことができます。
完全形:
10進法形式: