微分積分 例

u置換を用いた積分 xに対してe^(-x^4)(-4x^3)の積分
ステップ 1
とします。次にすると、です。を利用して書き換えます。
タップして手順をさらに表示してください…
ステップ 1.1
とします。を求めます。
タップして手順をさらに表示してください…
ステップ 1.1.1
を微分します。
ステップ 1.1.2
のとき、であるというべき乗則を使って微分します。
ステップ 1.2
を利用して問題を書き換えます。
ステップ 2
に書き換えます。
タップして手順をさらに表示してください…
ステップ 2.1
を利用し、に書き換えます。
ステップ 2.2
べき乗則を当てはめて、指数をかけ算します。
ステップ 2.3
をまとめます。
ステップ 2.4
の共通因数を約分します。
タップして手順をさらに表示してください…
ステップ 2.4.1
で因数分解します。
ステップ 2.4.2
共通因数を約分します。
タップして手順をさらに表示してください…
ステップ 2.4.2.1
で因数分解します。
ステップ 2.4.2.2
共通因数を約分します。
ステップ 2.4.2.3
式を書き換えます。
ステップ 2.4.2.4
で割ります。
ステップ 3
に対して定数なので、を積分の外に移動させます。
ステップ 4
とします。次にすると、です。を利用して書き換えます。
タップして手順をさらに表示してください…
ステップ 4.1
とします。を求めます。
タップして手順をさらに表示してください…
ステップ 4.1.1
を微分します。
ステップ 4.1.2
に対して定数なので、に対するの微分係数はです。
ステップ 4.1.3
のとき、であるというべき乗則を使って微分します。
ステップ 4.1.4
をかけます。
ステップ 4.2
を利用して問題を書き換えます。
ステップ 5
簡約します。
タップして手順をさらに表示してください…
ステップ 5.1
分数の前に負数を移動させます。
ステップ 5.2
をまとめます。
ステップ 6
に対して定数なので、を積分の外に移動させます。
ステップ 7
をかけます。
ステップ 8
に対して定数なので、を積分の外に移動させます。
ステップ 9
簡約します。
タップして手順をさらに表示してください…
ステップ 9.1
をまとめます。
ステップ 9.2
の共通因数を約分します。
タップして手順をさらに表示してください…
ステップ 9.2.1
共通因数を約分します。
ステップ 9.2.2
式を書き換えます。
ステップ 9.3
をかけます。
ステップ 10
に関する積分はです。
ステップ 11
各積分に置換変数を戻し入れます。
タップして手順をさらに表示してください…
ステップ 11.1
のすべての発生をで置き換えます。
ステップ 11.2
のすべての発生をで置き換えます。