微分積分 例

u置換を用いた積分 -2からxに対してx^2(x^3+8)^2の4までの積分
ステップ 1
とします。次にすると、です。を利用して書き換えます。
タップして手順をさらに表示してください…
ステップ 1.1
とします。を求めます。
タップして手順をさらに表示してください…
ステップ 1.1.1
を微分します。
ステップ 1.1.2
総和則では、に関する積分はです。
ステップ 1.1.3
のとき、であるというべき乗則を使って微分します。
ステップ 1.1.4
について定数なので、についての微分係数はです。
ステップ 1.1.5
をたし算します。
ステップ 1.2
に下限値を代入します。
ステップ 1.3
簡約します。
タップして手順をさらに表示してください…
ステップ 1.3.1
乗します。
ステップ 1.3.2
をたし算します。
ステップ 1.4
に上限値を代入します。
ステップ 1.5
簡約します。
タップして手順をさらに表示してください…
ステップ 1.5.1
乗します。
ステップ 1.5.2
をたし算します。
ステップ 1.6
について求めた値は定積分を求めるために利用します。
ステップ 1.7
、および新たな積分の極限を利用して問題を書き換えます。
ステップ 2
をまとめます。
ステップ 3
に対して定数なので、を積分の外に移動させます。
ステップ 4
べき乗則では、に関する積分はです。
ステップ 5
式を簡約します。
タップして手順をさらに表示してください…
ステップ 5.1
およびの値を求めます。
ステップ 5.2
乗します。
ステップ 5.3
簡約します。
タップして手順をさらに表示してください…
ステップ 5.3.1
をまとめます。
ステップ 5.3.2
の共通因数を約分します。
タップして手順をさらに表示してください…
ステップ 5.3.2.1
で因数分解します。
ステップ 5.3.2.2
共通因数を約分します。
タップして手順をさらに表示してください…
ステップ 5.3.2.2.1
で因数分解します。
ステップ 5.3.2.2.2
共通因数を約分します。
ステップ 5.3.2.2.3
式を書き換えます。
ステップ 5.3.2.2.4
で割ります。
ステップ 5.4
を正数乗し、を得ます。
ステップ 5.5
簡約します。
タップして手順をさらに表示してください…
ステップ 5.5.1
をかけます。
ステップ 5.5.2
をかけます。
ステップ 5.6
をたし算します。
ステップ 5.7
簡約します。
タップして手順をさらに表示してください…
ステップ 5.7.1
をまとめます。
ステップ 5.7.2
の共通因数を約分します。
タップして手順をさらに表示してください…
ステップ 5.7.2.1
で因数分解します。
ステップ 5.7.2.2
共通因数を約分します。
タップして手順をさらに表示してください…
ステップ 5.7.2.2.1
で因数分解します。
ステップ 5.7.2.2.2
共通因数を約分します。
ステップ 5.7.2.2.3
式を書き換えます。
ステップ 5.7.2.2.4
で割ります。