問題を入力...
微分積分 例
ステップ 1
がに近づいたら、極限で極限の法則の和を利用して分解します。
ステップ 2
の項はに対して一定なので、極限の外に移動させます。
ステップ 3
の項はに対して一定なので、極限の外に移動させます。
ステップ 4
根号の下に極限を移動させます。
ステップ 5
ステップ 5.1
をに代入し、の極限値を求めます。
ステップ 5.2
をに代入し、の極限値を求めます。
ステップ 6
ステップ 6.1
各項を簡約します。
ステップ 6.1.1
にをかけます。
ステップ 6.1.2
をに書き換えます。
ステップ 6.1.3
正の実数と仮定して、累乗根の下から項を取り出します。
ステップ 6.1.4
にをかけます。
ステップ 6.2
とをたし算します。