問題を入力...
微分積分 例
ステップ 1
方程式の両辺を微分します。
ステップ 2
ステップ 2.1
微分します。
ステップ 2.1.1
総和則では、のに関する積分はです。
ステップ 2.1.2
はについて定数なので、についての微分係数はです。
ステップ 2.2
の値を求めます。
ステップ 2.2.1
およびのとき、はであるという積の法則を使って微分します。
ステップ 2.2.2
をに書き換えます。
ステップ 2.2.3
のとき、はであるというべき乗則を使って微分します。
ステップ 2.2.4
にをかけます。
ステップ 2.3
の値を求めます。
ステップ 2.3.1
はに対して定数なので、に対するの微分係数はです。
ステップ 2.3.2
のとき、はであるというべき乗則を使って微分します。
ステップ 2.3.3
にをかけます。
ステップ 2.4
とをたし算します。
ステップ 3
ステップ 3.1
はに対して定数なので、に対するの微分係数はです。
ステップ 3.2
をに書き換えます。
ステップ 4
左辺と右辺を等しくし、式を作り変えます。
ステップ 5
ステップ 5.1
方程式の両辺からを引きます。
ステップ 5.2
を含まないすべての項を方程式の右辺に移動させます。
ステップ 5.2.1
方程式の両辺からを引きます。
ステップ 5.2.2
方程式の両辺にを足します。
ステップ 5.3
をで因数分解します。
ステップ 5.3.1
をで因数分解します。
ステップ 5.3.2
をで因数分解します。
ステップ 5.3.3
をで因数分解します。
ステップ 5.4
の各項をで割り、簡約します。
ステップ 5.4.1
の各項をで割ります。
ステップ 5.4.2
左辺を簡約します。
ステップ 5.4.2.1
の共通因数を約分します。
ステップ 5.4.2.1.1
共通因数を約分します。
ステップ 5.4.2.1.2
をで割ります。
ステップ 5.4.3
右辺を簡約します。
ステップ 5.4.3.1
公分母の分子をまとめます。
ステップ 5.4.3.2
をで因数分解します。
ステップ 5.4.3.3
をに書き換えます。
ステップ 5.4.3.4
をで因数分解します。
ステップ 5.4.3.5
式を簡約します。
ステップ 5.4.3.5.1
をに書き換えます。
ステップ 5.4.3.5.2
分数の前に負数を移動させます。
ステップ 6
をで置き換えます。