問題を入力...
微分積分 例
ステップ 1
ステップ 1.1
分子と分母の極限値を求めます。
ステップ 1.1.1
分子と分母の極限値をとります。
ステップ 1.1.2
首位係数が正である多項式の無限大における極限は無限大です。
ステップ 1.1.3
指数がに近づくので、数がに近づきます。
ステップ 1.1.4
無限大割る無限大は未定義です。
未定義
ステップ 1.2
は不定形があるので、ロピタルの定理を当てはめます。ロピタルの定理は、関数の商の極限は微分係数の商の極限に等しいとしています。
ステップ 1.3
分子と分母の微分係数を求めます。
ステップ 1.3.1
分母と分子を微分します。
ステップ 1.3.2
のとき、はであるというべき乗則を使って微分します。
ステップ 1.3.3
およびのとき、はであるという連鎖律を使って微分します。
ステップ 1.3.3.1
連鎖律を当てはめるために、をとします。
ステップ 1.3.3.2
=のとき、はであるという指数法則を使って微分します。
ステップ 1.3.3.3
のすべての発生をで置き換えます。
ステップ 1.3.4
はに対して定数なので、に対するの微分係数はです。
ステップ 1.3.5
のとき、はであるというべき乗則を使って微分します。
ステップ 1.3.6
にをかけます。
ステップ 1.3.7
をの左に移動させます。
ステップ 1.4
の共通因数を約分します。
ステップ 1.4.1
共通因数を約分します。
ステップ 1.4.2
式を書き換えます。
ステップ 2
ステップ 2.1
分子と分母の極限値を求めます。
ステップ 2.1.1
分子と分母の極限値をとります。
ステップ 2.1.2
首位係数が正である多項式の無限大における極限は無限大です。
ステップ 2.1.3
指数がに近づくので、数がに近づきます。
ステップ 2.1.4
無限大割る無限大は未定義です。
未定義
ステップ 2.2
は不定形があるので、ロピタルの定理を当てはめます。ロピタルの定理は、関数の商の極限は微分係数の商の極限に等しいとしています。
ステップ 2.3
分子と分母の微分係数を求めます。
ステップ 2.3.1
分母と分子を微分します。
ステップ 2.3.2
のとき、はであるというべき乗則を使って微分します。
ステップ 2.3.3
およびのとき、はであるという連鎖律を使って微分します。
ステップ 2.3.3.1
連鎖律を当てはめるために、をとします。
ステップ 2.3.3.2
=のとき、はであるという指数法則を使って微分します。
ステップ 2.3.3.3
のすべての発生をで置き換えます。
ステップ 2.3.4
はに対して定数なので、に対するの微分係数はです。
ステップ 2.3.5
のとき、はであるというべき乗則を使って微分します。
ステップ 2.3.6
にをかけます。
ステップ 2.3.7
をの左に移動させます。
ステップ 3
の項はに対して一定なので、極限の外に移動させます。
ステップ 4
分子が実数に近づき、分母が有界でないので、分数はに近づきます。
ステップ 5
にをかけます。