問題を入力...
微分積分 例
?
ステップ 1
がに近づいたら、極限で極限の商の法則を利用して極限を分割します。
ステップ 2
の項はに対して一定なので、極限の外に移動させます。
ステップ 3
指数に極限を移動させます。
ステップ 4
の項はに対して一定なので、極限の外に移動させます。
ステップ 5
極限べき乗則を利用して、指数をから極限値外側に移動させます。
ステップ 6
がに近づいたら、極限で極限の法則の和を利用して分解します。
ステップ 7
がに近づくと定数であるの極限値を求めます。
ステップ 8
指数に極限を移動させます。
ステップ 9
の項はに対して一定なので、極限の外に移動させます。
ステップ 10
ステップ 10.1
をに代入し、の極限値を求めます。
ステップ 10.2
をに代入し、の極限値を求めます。
ステップ 11
ステップ 11.1
分子を簡約します。
ステップ 11.1.1
にをかけます。
ステップ 11.1.2
にべき乗するものはとなります。
ステップ 11.2
分母を簡約します。
ステップ 11.2.1
にをかけます。
ステップ 11.2.2
にべき乗するものはとなります。
ステップ 11.2.3
にをかけます。
ステップ 11.2.4
からを引きます。
ステップ 11.2.5
1のすべての数の累乗は1です。
ステップ 11.3
にをかけます。
ステップ 11.4
をで割ります。