問題を入力...
微分積分 例
ステップ 1
ステップ 1.1
およびのとき、はであるという連鎖律を使って微分します。
ステップ 1.1.1
連鎖律を当てはめるために、をとします。
ステップ 1.1.2
のとき、はであるというべき乗則を使って微分します。
ステップ 1.1.3
のすべての発生をで置き換えます。
ステップ 1.2
に関するの微分係数はです。
ステップ 1.3
簡約します。
ステップ 1.3.1
の因数を並べ替えます。
ステップ 1.3.2
とを並べ替えます。
ステップ 1.3.3
とを並べ替えます。
ステップ 1.3.4
正弦2倍角の公式を当てはめます。
ステップ 2
ステップ 2.1
およびのとき、はであるという連鎖律を使って微分します。
ステップ 2.1.1
連鎖律を当てはめるために、をとします。
ステップ 2.1.2
に関するの微分係数はです。
ステップ 2.1.3
のすべての発生をで置き換えます。
ステップ 2.2
微分します。
ステップ 2.2.1
はに対して定数なので、に対するの微分係数はです。
ステップ 2.2.2
のとき、はであるというべき乗則を使って微分します。
ステップ 2.2.3
式を簡約します。
ステップ 2.2.3.1
にをかけます。
ステップ 2.2.3.2
をの左に移動させます。
ステップ 3
微分係数をと等しくし、式を解いて関数の極大値と最小値を求めます。
ステップ 4
方程式の両辺の逆正弦をとり、正弦の中からを取り出します。
ステップ 5
ステップ 5.1
の厳密値はです。
ステップ 6
ステップ 6.1
の各項をで割ります。
ステップ 6.2
左辺を簡約します。
ステップ 6.2.1
の共通因数を約分します。
ステップ 6.2.1.1
共通因数を約分します。
ステップ 6.2.1.2
をで割ります。
ステップ 6.3
右辺を簡約します。
ステップ 6.3.1
をで割ります。
ステップ 7
正弦関数は、第一象限と第二象限で正となります。2番目の解を求めるには、から参照角を引き、第二象限で解を求めます。
ステップ 8
ステップ 8.1
簡約します。
ステップ 8.1.1
にをかけます。
ステップ 8.1.2
とをたし算します。
ステップ 8.2
の各項をで割り、簡約します。
ステップ 8.2.1
の各項をで割ります。
ステップ 8.2.2
左辺を簡約します。
ステップ 8.2.2.1
の共通因数を約分します。
ステップ 8.2.2.1.1
共通因数を約分します。
ステップ 8.2.2.1.2
をで割ります。
ステップ 9
方程式に対する解です。
ステップ 10
で二次導関数の値を求めます。二次導関数が正のとき、この値が極小値です。二次導関数が負の時、この値が極大値です。
ステップ 11
ステップ 11.1
にをかけます。
ステップ 11.2
の厳密値はです。
ステップ 11.3
にをかけます。
ステップ 12
は二次導関数の値が正であるため、極小値です。これは二次導関数テストと呼ばれます。
は極小値です
ステップ 13
ステップ 13.1
式の変数をで置換えます。
ステップ 13.2
結果を簡約します。
ステップ 13.2.1
の厳密値はです。
ステップ 13.2.2
を正数乗し、を得ます。
ステップ 13.2.3
最終的な答えはです。
ステップ 14
で二次導関数の値を求めます。二次導関数が正のとき、この値が極小値です。二次導関数が負の時、この値が極大値です。
ステップ 15
ステップ 15.1
の共通因数を約分します。
ステップ 15.1.1
共通因数を約分します。
ステップ 15.1.2
式を書き換えます。
ステップ 15.2
第一象限で等しい三角の値を持つ角度を求め、参照角を当てはめます。余弦は第二象限で負であるため、式を負にします。
ステップ 15.3
の厳密値はです。
ステップ 15.4
を掛けます。
ステップ 15.4.1
にをかけます。
ステップ 15.4.2
にをかけます。
ステップ 16
は二次導関数の値が負であるため、極大値です。これは二次導関数テストと呼ばれます。
は極大値です
ステップ 17
ステップ 17.1
式の変数をで置換えます。
ステップ 17.2
結果を簡約します。
ステップ 17.2.1
の厳密値はです。
ステップ 17.2.2
1のすべての数の累乗は1です。
ステップ 17.2.3
最終的な答えはです。
ステップ 18
の極値です。
は極小値です
は極大値です
ステップ 19