微分積分 例

極大値と極小値を求める f(x) = natural log of x^2-1
ステップ 1
関数の一次導関数を求めます。
タップして手順をさらに表示してください…
ステップ 1.1
およびのとき、であるという連鎖律を使って微分します。
タップして手順をさらに表示してください…
ステップ 1.1.1
連鎖律を当てはめるために、とします。
ステップ 1.1.2
に関するの微分係数はです。
ステップ 1.1.3
のすべての発生をで置き換えます。
ステップ 1.2
微分します。
タップして手順をさらに表示してください…
ステップ 1.2.1
総和則では、に関する積分はです。
ステップ 1.2.2
のとき、であるというべき乗則を使って微分します。
ステップ 1.2.3
について定数なので、についての微分係数はです。
ステップ 1.2.4
分数をまとめます。
タップして手順をさらに表示してください…
ステップ 1.2.4.1
をたし算します。
ステップ 1.2.4.2
をまとめます。
ステップ 1.2.4.3
をまとめます。
ステップ 2
関数の二次導関数を求めます。
タップして手順をさらに表示してください…
ステップ 2.1
に対して定数なので、に対するの微分係数はです。
ステップ 2.2
およびのとき、であるという商の法則を使って微分します。
ステップ 2.3
微分します。
タップして手順をさらに表示してください…
ステップ 2.3.1
のとき、であるというべき乗則を使って微分します。
ステップ 2.3.2
をかけます。
ステップ 2.3.3
総和則では、に関する積分はです。
ステップ 2.3.4
のとき、であるというべき乗則を使って微分します。
ステップ 2.3.5
について定数なので、についての微分係数はです。
ステップ 2.3.6
式を簡約します。
タップして手順をさらに表示してください…
ステップ 2.3.6.1
をたし算します。
ステップ 2.3.6.2
をかけます。
ステップ 2.4
乗します。
ステップ 2.5
乗します。
ステップ 2.6
べき乗則を利用して指数を組み合わせます。
ステップ 2.7
をたし算します。
ステップ 2.8
からを引きます。
ステップ 2.9
をまとめます。
ステップ 2.10
簡約します。
タップして手順をさらに表示してください…
ステップ 2.10.1
分配則を当てはめます。
ステップ 2.10.2
各項を簡約します。
タップして手順をさらに表示してください…
ステップ 2.10.2.1
をかけます。
ステップ 2.10.2.2
をかけます。
ステップ 3
微分係数をと等しくし、式を解いて関数の極大値と最小値を求めます。
ステップ 4
一次導関数がに等しくなるの値がないので、極値はありません。
極値がありません
ステップ 5
極値がありません
ステップ 6