微分積分 例

部分積分 0からxに対してarctan(2x)の1までの積分
ステップ 1
ならば、公式を利用して部分積分します。
ステップ 2
簡約します。
タップして手順をさらに表示してください…
ステップ 2.1
をまとめます。
ステップ 2.2
の左に移動させます。
ステップ 3
に対して定数なので、を積分の外に移動させます。
ステップ 4
をかけます。
ステップ 5
とします。次にすると、です。を利用して書き換えます。
タップして手順をさらに表示してください…
ステップ 5.1
とします。を求めます。
タップして手順をさらに表示してください…
ステップ 5.1.1
を微分します。
ステップ 5.1.2
総和則では、に関する積分はです。
ステップ 5.1.3
の値を求めます。
タップして手順をさらに表示してください…
ステップ 5.1.3.1
に対して定数なので、に対するの微分係数はです。
ステップ 5.1.3.2
のとき、であるというべき乗則を使って微分します。
ステップ 5.1.3.3
をかけます。
ステップ 5.1.4
定数の規則を使って微分します。
タップして手順をさらに表示してください…
ステップ 5.1.4.1
について定数なので、についての微分係数はです。
ステップ 5.1.4.2
をたし算します。
ステップ 5.2
に下限値を代入します。
ステップ 5.3
簡約します。
タップして手順をさらに表示してください…
ステップ 5.3.1
各項を簡約します。
タップして手順をさらに表示してください…
ステップ 5.3.1.1
を正数乗し、を得ます。
ステップ 5.3.1.2
をかけます。
ステップ 5.3.2
をたし算します。
ステップ 5.4
に上限値を代入します。
ステップ 5.5
簡約します。
タップして手順をさらに表示してください…
ステップ 5.5.1
各項を簡約します。
タップして手順をさらに表示してください…
ステップ 5.5.1.1
1のすべての数の累乗は1です。
ステップ 5.5.1.2
をかけます。
ステップ 5.5.2
をたし算します。
ステップ 5.6
について求めた値は定積分を求めるために利用します。
ステップ 5.7
、および新たな積分の極限を利用して問題を書き換えます。
ステップ 6
簡約します。
タップして手順をさらに表示してください…
ステップ 6.1
をかけます。
ステップ 6.2
の左に移動させます。
ステップ 7
に対して定数なので、を積分の外に移動させます。
ステップ 8
簡約します。
タップして手順をさらに表示してください…
ステップ 8.1
をまとめます。
ステップ 8.2
の共通因数を約分します。
タップして手順をさらに表示してください…
ステップ 8.2.1
で因数分解します。
ステップ 8.2.2
共通因数を約分します。
タップして手順をさらに表示してください…
ステップ 8.2.2.1
で因数分解します。
ステップ 8.2.2.2
共通因数を約分します。
ステップ 8.2.2.3
式を書き換えます。
ステップ 8.3
分数の前に負数を移動させます。
ステップ 9
に関する積分はです。
ステップ 10
簡約します。
タップして手順をさらに表示してください…
ステップ 10.1
およびの値を求めます。
ステップ 10.2
式を簡約します。
タップして手順をさらに表示してください…
ステップ 10.2.1
およびの値を求めます。
ステップ 10.2.2
掛け算します。
タップして手順をさらに表示してください…
ステップ 10.2.2.1
をかけます。
ステップ 10.2.2.2
をかけます。
ステップ 10.2.2.3
をかけます。
ステップ 10.2.3
簡約します。
タップして手順をさらに表示してください…
ステップ 10.2.3.1
をかけます。
ステップ 10.2.3.2
をかけます。
ステップ 10.2.4
をたし算します。
ステップ 10.3
簡約します。
タップして手順をさらに表示してください…
ステップ 10.3.1
対数の商の性質を使います、です。
ステップ 10.3.2
をまとめます。
ステップ 10.4
簡約します。
タップして手順をさらに表示してください…
ステップ 10.4.1
絶対値は数と0の間の距離です。の間の距離はです。
ステップ 10.4.2
絶対値は数と0の間の距離です。の間の距離はです。
ステップ 10.4.3
で割ります。
ステップ 11
結果は複数の形で表すことができます。
完全形:
10進法形式: