微分積分 例

Найти Fourth-ю производную f(x)=sin(ax)
ステップ 1
一次導関数を求めます。
タップして手順をさらに表示してください…
ステップ 1.1
およびのとき、であるという連鎖律を使って微分します。
タップして手順をさらに表示してください…
ステップ 1.1.1
連鎖律を当てはめるために、とします。
ステップ 1.1.2
に関するの微分係数はです。
ステップ 1.1.3
のすべての発生をで置き換えます。
ステップ 1.2
微分します。
タップして手順をさらに表示してください…
ステップ 1.2.1
に対して定数なので、に対するの微分係数はです。
ステップ 1.2.2
のとき、であるというべき乗則を使って微分します。
ステップ 1.2.3
式を簡約します。
タップして手順をさらに表示してください…
ステップ 1.2.3.1
をかけます。
ステップ 1.2.3.2
の因数を並べ替えます。
ステップ 2
二次導関数を求めます。
タップして手順をさらに表示してください…
ステップ 2.1
に対して定数なので、に対するの微分係数はです。
ステップ 2.2
およびのとき、であるという連鎖律を使って微分します。
タップして手順をさらに表示してください…
ステップ 2.2.1
連鎖律を当てはめるために、とします。
ステップ 2.2.2
に関するの微分係数はです。
ステップ 2.2.3
のすべての発生をで置き換えます。
ステップ 2.3
に対して定数なので、に対するの微分係数はです。
ステップ 2.4
乗します。
ステップ 2.5
乗します。
ステップ 2.6
べき乗則を利用して指数を組み合わせます。
ステップ 2.7
をたし算します。
ステップ 2.8
のとき、であるというべき乗則を使って微分します。
ステップ 2.9
式を簡約します。
タップして手順をさらに表示してください…
ステップ 2.9.1
をかけます。
ステップ 2.9.2
の因数を並べ替えます。
ステップ 3
三次導関数を求めます。
タップして手順をさらに表示してください…
ステップ 3.1
に対して定数なので、に対するの微分係数はです。
ステップ 3.2
およびのとき、であるという連鎖律を使って微分します。
タップして手順をさらに表示してください…
ステップ 3.2.1
連鎖律を当てはめるために、とします。
ステップ 3.2.2
に関するの微分係数はです。
ステップ 3.2.3
のすべての発生をで置き換えます。
ステップ 3.3
に対して定数なので、に対するの微分係数はです。
ステップ 3.4
乗します。
ステップ 3.5
べき乗則を利用して指数を組み合わせます。
ステップ 3.6
をたし算します。
ステップ 3.7
のとき、であるというべき乗則を使って微分します。
ステップ 3.8
をかけます。
ステップ 4
四次導関数を求めます。
タップして手順をさらに表示してください…
ステップ 4.1
に対して定数なので、に対するの微分係数はです。
ステップ 4.2
およびのとき、であるという連鎖律を使って微分します。
タップして手順をさらに表示してください…
ステップ 4.2.1
連鎖律を当てはめるために、とします。
ステップ 4.2.2
に関するの微分係数はです。
ステップ 4.2.3
のすべての発生をで置き換えます。
ステップ 4.3
定数倍の公式を使って微分します。
タップして手順をさらに表示してください…
ステップ 4.3.1
をかけます。
ステップ 4.3.2
をかけます。
ステップ 4.3.3
に対して定数なので、に対するの微分係数はです。
ステップ 4.4
指数を足してを掛けます。
タップして手順をさらに表示してください…
ステップ 4.4.1
を移動させます。
ステップ 4.4.2
をかけます。
タップして手順をさらに表示してください…
ステップ 4.4.2.1
乗します。
ステップ 4.4.2.2
べき乗則を利用して指数を組み合わせます。
ステップ 4.4.3
をたし算します。
ステップ 4.5
のとき、であるというべき乗則を使って微分します。
ステップ 4.6
をかけます。
ステップ 5
に関するの四次導関数はです。