問題を入力...
微分積分 例
ステップ 1
ステップ 1.1
をに書き換えます。
ステップ 1.2
を対数の外に移動させて、を展開します。
ステップ 2
ステップ 2.1
指数に極限を移動させます。
ステップ 2.2
とをまとめます。
ステップ 3
ステップ 3.1
分子と分母の極限値を求めます。
ステップ 3.1.1
分子と分母の極限値をとります。
ステップ 3.1.2
対数が無限大に近づくとき、値はになります。
ステップ 3.1.3
首位係数が正である多項式の無限大における極限は無限大です。
ステップ 3.1.4
無限大割る無限大は未定義です。
未定義
ステップ 3.2
は不定形があるので、ロピタルの定理を当てはめます。ロピタルの定理は、関数の商の極限は微分係数の商の極限に等しいとしています。
ステップ 3.3
分子と分母の微分係数を求めます。
ステップ 3.3.1
分母と分子を微分します。
ステップ 3.3.2
に関するの微分係数はです。
ステップ 3.3.3
のとき、はであるというべき乗則を使って微分します。
ステップ 3.4
分子に分母の逆数を掛けます。
ステップ 3.5
因数をまとめます。
ステップ 3.5.1
にをかけます。
ステップ 3.5.2
を乗します。
ステップ 3.5.3
を乗します。
ステップ 3.5.4
べき乗則を利用して指数を組み合わせます。
ステップ 3.5.5
とをたし算します。
ステップ 4
の項はに対して一定なので、極限の外に移動させます。
ステップ 5
分子が実数に近づき、分母が有界でないので、分数はに近づきます。
ステップ 6
ステップ 6.1
にをかけます。
ステップ 6.2
にべき乗するものはとなります。