問題を入力...
微分積分 例
ステップ 1
がに近づいたら、極限で極限の商の法則を利用して極限を分割します。
ステップ 2
がに近づいたら、極限で極限の法則の和を利用して分解します。
ステップ 3
がに近づくと定数であるの極限値を求めます。
ステップ 4
の項はに対して一定なので、極限の外に移動させます。
ステップ 5
余弦が連続なので、極限を三角関数の中に移動させます。
ステップ 6
ステップ 6.1
をに代入し、の極限値を求めます。
ステップ 6.2
をに代入し、の極限値を求めます。
ステップ 7
ステップ 7.1
分子を簡約します。
ステップ 7.1.1
にをかけます。
ステップ 7.1.2
とをたし算します。
ステップ 7.2
の厳密値はです。
ステップ 7.3
をで割ります。