微分積分 例

微分方程式を解きます y'=2xy
ステップ 1
微分方程式の解を書き換えます。
ステップ 2
変数を分けます。
タップして手順をさらに表示してください…
ステップ 2.1
両辺にを掛けます。
ステップ 2.2
簡約します。
タップして手順をさらに表示してください…
ステップ 2.2.1
積の可換性を利用して書き換えます。
ステップ 2.2.2
をまとめます。
ステップ 2.2.3
の共通因数を約分します。
タップして手順をさらに表示してください…
ステップ 2.2.3.1
で因数分解します。
ステップ 2.2.3.2
共通因数を約分します。
ステップ 2.2.3.3
式を書き換えます。
ステップ 2.3
方程式を書き換えます。
ステップ 3
両辺を積分します。
タップして手順をさらに表示してください…
ステップ 3.1
各辺の積分を設定します。
ステップ 3.2
に関する積分はです。
ステップ 3.3
右辺を積分します。
タップして手順をさらに表示してください…
ステップ 3.3.1
に対して定数なので、を積分の外に移動させます。
ステップ 3.3.2
べき乗則では、に関する積分はです。
ステップ 3.3.3
答えを簡約します。
タップして手順をさらに表示してください…
ステップ 3.3.3.1
に書き換えます。
ステップ 3.3.3.2
簡約します。
タップして手順をさらに表示してください…
ステップ 3.3.3.2.1
をまとめます。
ステップ 3.3.3.2.2
の共通因数を約分します。
タップして手順をさらに表示してください…
ステップ 3.3.3.2.2.1
共通因数を約分します。
ステップ 3.3.3.2.2.2
式を書き換えます。
ステップ 3.3.3.2.3
をかけます。
ステップ 3.4
右辺の積分定数をとしてまとめます。
ステップ 4
について解きます。
タップして手順をさらに表示してください…
ステップ 4.1
について解くために、対数の性質を利用して方程式を書き換えます。
ステップ 4.2
対数の定義を利用してを指数表記に書き換えます。が正の実数でならば、と同値です。
ステップ 4.3
について解きます。
タップして手順をさらに表示してください…
ステップ 4.3.1
方程式をとして書き換えます。
ステップ 4.3.2
絶対値の項を削除します。これにより、なので方程式の右辺にができます。
ステップ 5
定数項をまとめます。
タップして手順をさらに表示してください…
ステップ 5.1
に書き換えます。
ステップ 5.2
を並べ替えます。
ステップ 5.3
定数を正または負でまとめます。