微分積分 例

最大値または最小値を求める f(x)=-x^3+15x^2-75x+125
ステップ 1
関数の一次導関数を求めます。
タップして手順をさらに表示してください…
ステップ 1.1
総和則では、に関する積分はです。
ステップ 1.2
の値を求めます。
タップして手順をさらに表示してください…
ステップ 1.2.1
に対して定数なので、に対するの微分係数はです。
ステップ 1.2.2
のとき、であるというべき乗則を使って微分します。
ステップ 1.2.3
をかけます。
ステップ 1.3
の値を求めます。
タップして手順をさらに表示してください…
ステップ 1.3.1
に対して定数なので、に対するの微分係数はです。
ステップ 1.3.2
のとき、であるというべき乗則を使って微分します。
ステップ 1.3.3
をかけます。
ステップ 1.4
の値を求めます。
タップして手順をさらに表示してください…
ステップ 1.4.1
に対して定数なので、に対するの微分係数はです。
ステップ 1.4.2
のとき、であるというべき乗則を使って微分します。
ステップ 1.4.3
をかけます。
ステップ 1.5
定数の規則を使って微分します。
タップして手順をさらに表示してください…
ステップ 1.5.1
について定数なので、についての微分係数はです。
ステップ 1.5.2
をたし算します。
ステップ 2
関数の二次導関数を求めます。
タップして手順をさらに表示してください…
ステップ 2.1
総和則では、に関する積分はです。
ステップ 2.2
の値を求めます。
タップして手順をさらに表示してください…
ステップ 2.2.1
に対して定数なので、に対するの微分係数はです。
ステップ 2.2.2
のとき、であるというべき乗則を使って微分します。
ステップ 2.2.3
をかけます。
ステップ 2.3
の値を求めます。
タップして手順をさらに表示してください…
ステップ 2.3.1
に対して定数なので、に対するの微分係数はです。
ステップ 2.3.2
のとき、であるというべき乗則を使って微分します。
ステップ 2.3.3
をかけます。
ステップ 2.4
定数の規則を使って微分します。
タップして手順をさらに表示してください…
ステップ 2.4.1
について定数なので、についての微分係数はです。
ステップ 2.4.2
をたし算します。
ステップ 3
微分係数をと等しくし、式を解いて関数の極大値と最小値を求めます。
ステップ 4
一次導関数を求めます。
タップして手順をさらに表示してください…
ステップ 4.1
一次導関数を求めます。
タップして手順をさらに表示してください…
ステップ 4.1.1
総和則では、に関する積分はです。
ステップ 4.1.2
の値を求めます。
タップして手順をさらに表示してください…
ステップ 4.1.2.1
に対して定数なので、に対するの微分係数はです。
ステップ 4.1.2.2
のとき、であるというべき乗則を使って微分します。
ステップ 4.1.2.3
をかけます。
ステップ 4.1.3
の値を求めます。
タップして手順をさらに表示してください…
ステップ 4.1.3.1
に対して定数なので、に対するの微分係数はです。
ステップ 4.1.3.2
のとき、であるというべき乗則を使って微分します。
ステップ 4.1.3.3
をかけます。
ステップ 4.1.4
の値を求めます。
タップして手順をさらに表示してください…
ステップ 4.1.4.1
に対して定数なので、に対するの微分係数はです。
ステップ 4.1.4.2
のとき、であるというべき乗則を使って微分します。
ステップ 4.1.4.3
をかけます。
ステップ 4.1.5
定数の規則を使って微分します。
タップして手順をさらに表示してください…
ステップ 4.1.5.1
について定数なので、についての微分係数はです。
ステップ 4.1.5.2
をたし算します。
ステップ 4.2
に関するの一次導関数はです。
ステップ 5
一次導関数をと等しくし、次に方程式を解きます。
タップして手順をさらに表示してください…
ステップ 5.1
一次導関数をに等しくします。
ステップ 5.2
方程式の左辺を因数分解します。
タップして手順をさらに表示してください…
ステップ 5.2.1
で因数分解します。
タップして手順をさらに表示してください…
ステップ 5.2.1.1
で因数分解します。
ステップ 5.2.1.2
で因数分解します。
ステップ 5.2.1.3
で因数分解します。
ステップ 5.2.1.4
で因数分解します。
ステップ 5.2.1.5
で因数分解します。
ステップ 5.2.2
完全平方式を利用して因数分解します。
タップして手順をさらに表示してください…
ステップ 5.2.2.1
に書き換えます。
ステップ 5.2.2.2
中間項が、第1項と第3項で2乗される数の積の2倍であることを確認します。
ステップ 5.2.2.3
多項式を書き換えます。
ステップ 5.2.2.4
ならば、完全平方3項式を利用して因数分解します。
ステップ 5.3
の各項をで割り、簡約します。
タップして手順をさらに表示してください…
ステップ 5.3.1
の各項をで割ります。
ステップ 5.3.2
左辺を簡約します。
タップして手順をさらに表示してください…
ステップ 5.3.2.1
の共通因数を約分します。
タップして手順をさらに表示してください…
ステップ 5.3.2.1.1
共通因数を約分します。
ステップ 5.3.2.1.2
で割ります。
ステップ 5.3.3
右辺を簡約します。
タップして手順をさらに表示してください…
ステップ 5.3.3.1
で割ります。
ステップ 5.4
に等しいとします。
ステップ 5.5
方程式の両辺にを足します。
ステップ 6
微分係数が未定義になる値を求めます。
タップして手順をさらに表示してください…
ステップ 6.1
式の定義域は、式が未定義の場合を除き、すべての実数です。この場合、式が未定義になるような実数はありません。
ステップ 7
値を求める臨界点です。
ステップ 8
で二次導関数の値を求めます。二次導関数が正のとき、この値が極小値です。二次導関数が負の時、この値が極大値です。
ステップ 9
二次導関数の値を求めます。
タップして手順をさらに表示してください…
ステップ 9.1
をかけます。
ステップ 9.2
をたし算します。
ステップ 10
をもつ点が1点以上または未定義の二次導関数があるので、一次導関数検定を当てはめます。
タップして手順をさらに表示してください…
ステップ 10.1
一次導関数または未定義になる値の周囲で、を分離区間に分割します。
ステップ 10.2
一次導関数の区間からなどの任意の数を代入し、結果が負か正か確認します。
タップして手順をさらに表示してください…
ステップ 10.2.1
式の変数で置換えます。
ステップ 10.2.2
結果を簡約します。
タップして手順をさらに表示してください…
ステップ 10.2.2.1
各項を簡約します。
タップして手順をさらに表示してください…
ステップ 10.2.2.1.1
を正数乗し、を得ます。
ステップ 10.2.2.1.2
をかけます。
ステップ 10.2.2.1.3
をかけます。
ステップ 10.2.2.2
足し算と引き算で簡約します。
タップして手順をさらに表示してください…
ステップ 10.2.2.2.1
をたし算します。
ステップ 10.2.2.2.2
からを引きます。
ステップ 10.2.2.3
最終的な答えはです。
ステップ 10.3
一次導関数の区間からなどの任意の数を代入し、結果が負か正か確認します。
タップして手順をさらに表示してください…
ステップ 10.3.1
式の変数で置換えます。
ステップ 10.3.2
結果を簡約します。
タップして手順をさらに表示してください…
ステップ 10.3.2.1
各項を簡約します。
タップして手順をさらに表示してください…
ステップ 10.3.2.1.1
乗します。
ステップ 10.3.2.1.2
をかけます。
ステップ 10.3.2.1.3
をかけます。
ステップ 10.3.2.2
足し算と引き算で簡約します。
タップして手順をさらに表示してください…
ステップ 10.3.2.2.1
をたし算します。
ステップ 10.3.2.2.2
からを引きます。
ステップ 10.3.2.3
最終的な答えはです。
ステップ 10.4
の周囲で一次導関数の符号が変化しなかったので、これは極大値または極小値ではありません。
極大値または極小値ではありません
ステップ 10.5
における極大値または極小値は求められません。
極大値または極小値はありません
極大値または極小値はありません
ステップ 11