微分積分 例

極限を求める xが(2x^2+7x-4)/(2x-1)の1/2に近づく極限
ステップ 1
ロピタルの定理を当てはめます。
タップして手順をさらに表示してください…
ステップ 1.1
分子と分母の極限値を求めます。
タップして手順をさらに表示してください…
ステップ 1.1.1
分子と分母の極限値をとります。
ステップ 1.1.2
分子の極限値を求めます。
タップして手順をさらに表示してください…
ステップ 1.1.2.1
に近づいたら、極限で極限の法則の和を利用して分解します。
ステップ 1.1.2.2
の項はに対して一定なので、極限の外に移動させます。
ステップ 1.1.2.3
極限べき乗則を利用して、指数から極限値外側に移動させます。
ステップ 1.1.2.4
の項はに対して一定なので、極限の外に移動させます。
ステップ 1.1.2.5
に近づくと定数であるの極限値を求めます。
ステップ 1.1.2.6
すべてのに代入し、極限値を求めます。
タップして手順をさらに表示してください…
ステップ 1.1.2.6.1
に代入し、の極限値を求めます。
ステップ 1.1.2.6.2
に代入し、の極限値を求めます。
ステップ 1.1.2.7
答えを簡約します。
タップして手順をさらに表示してください…
ステップ 1.1.2.7.1
各項を簡約します。
タップして手順をさらに表示してください…
ステップ 1.1.2.7.1.1
積の法則をに当てはめます。
ステップ 1.1.2.7.1.2
の共通因数を約分します。
タップして手順をさらに表示してください…
ステップ 1.1.2.7.1.2.1
で因数分解します。
ステップ 1.1.2.7.1.2.2
共通因数を約分します。
ステップ 1.1.2.7.1.2.3
式を書き換えます。
ステップ 1.1.2.7.1.3
1のすべての数の累乗は1です。
ステップ 1.1.2.7.1.4
をまとめます。
ステップ 1.1.2.7.1.5
をかけます。
ステップ 1.1.2.7.2
公分母の分子をまとめます。
ステップ 1.1.2.7.3
をたし算します。
ステップ 1.1.2.7.4
で割ります。
ステップ 1.1.2.7.5
をたし算します。
ステップ 1.1.3
分母の極限値を求めます。
タップして手順をさらに表示してください…
ステップ 1.1.3.1
極限を求めます。
タップして手順をさらに表示してください…
ステップ 1.1.3.1.1
に近づいたら、極限で極限の法則の和を利用して分解します。
ステップ 1.1.3.1.2
の項はに対して一定なので、極限の外に移動させます。
ステップ 1.1.3.1.3
に近づくと定数であるの極限値を求めます。
ステップ 1.1.3.2
に代入し、の極限値を求めます。
ステップ 1.1.3.3
答えを簡約します。
タップして手順をさらに表示してください…
ステップ 1.1.3.3.1
各項を簡約します。
タップして手順をさらに表示してください…
ステップ 1.1.3.3.1.1
の共通因数を約分します。
タップして手順をさらに表示してください…
ステップ 1.1.3.3.1.1.1
共通因数を約分します。
ステップ 1.1.3.3.1.1.2
式を書き換えます。
ステップ 1.1.3.3.1.2
をかけます。
ステップ 1.1.3.3.2
からを引きます。
ステップ 1.1.3.3.3
による除算を含む式です。式は未定義です。
未定義
ステップ 1.1.3.4
による除算を含む式です。式は未定義です。
未定義
ステップ 1.1.4
による除算を含む式です。式は未定義です。
未定義
ステップ 1.2
は不定形があるので、ロピタルの定理を当てはめます。ロピタルの定理は、関数の商の極限は微分係数の商の極限に等しいとしています。
ステップ 1.3
分子と分母の微分係数を求めます。
タップして手順をさらに表示してください…
ステップ 1.3.1
分母と分子を微分します。
ステップ 1.3.2
総和則では、に関する積分はです。
ステップ 1.3.3
の値を求めます。
タップして手順をさらに表示してください…
ステップ 1.3.3.1
に対して定数なので、に対するの微分係数はです。
ステップ 1.3.3.2
のとき、であるというべき乗則を使って微分します。
ステップ 1.3.3.3
をかけます。
ステップ 1.3.4
の値を求めます。
タップして手順をさらに表示してください…
ステップ 1.3.4.1
に対して定数なので、に対するの微分係数はです。
ステップ 1.3.4.2
のとき、であるというべき乗則を使って微分します。
ステップ 1.3.4.3
をかけます。
ステップ 1.3.5
について定数なので、についての微分係数はです。
ステップ 1.3.6
をたし算します。
ステップ 1.3.7
総和則では、に関する積分はです。
ステップ 1.3.8
の値を求めます。
タップして手順をさらに表示してください…
ステップ 1.3.8.1
に対して定数なので、に対するの微分係数はです。
ステップ 1.3.8.2
のとき、であるというべき乗則を使って微分します。
ステップ 1.3.8.3
をかけます。
ステップ 1.3.9
について定数なので、についての微分係数はです。
ステップ 1.3.10
をたし算します。
ステップ 2
極限を求めます。
タップして手順をさらに表示してください…
ステップ 2.1
の項はに対して一定なので、極限の外に移動させます。
ステップ 2.2
に近づいたら、極限で極限の法則の和を利用して分解します。
ステップ 2.3
の項はに対して一定なので、極限の外に移動させます。
ステップ 2.4
に近づくと定数であるの極限値を求めます。
ステップ 3
に代入し、の極限値を求めます。
ステップ 4
答えを簡約します。
タップして手順をさらに表示してください…
ステップ 4.1
の共通因数を約分します。
タップして手順をさらに表示してください…
ステップ 4.1.1
で因数分解します。
ステップ 4.1.2
共通因数を約分します。
ステップ 4.1.3
式を書き換えます。
ステップ 4.2
をたし算します。
ステップ 4.3
をまとめます。
ステップ 5
結果は複数の形で表すことができます。
完全形:
10進法形式: