微分積分 例

変曲点を求める f(x)=-1/3x^3-9x^2
ステップ 1
二次導関数を求めます。
タップして手順をさらに表示してください…
ステップ 1.1
一次導関数を求めます。
タップして手順をさらに表示してください…
ステップ 1.1.1
総和則では、に関する積分はです。
ステップ 1.1.2
の値を求めます。
タップして手順をさらに表示してください…
ステップ 1.1.2.1
に対して定数なので、に対するの微分係数はです。
ステップ 1.1.2.2
のとき、であるというべき乗則を使って微分します。
ステップ 1.1.2.3
をかけます。
ステップ 1.1.2.4
をまとめます。
ステップ 1.1.2.5
をまとめます。
ステップ 1.1.2.6
の共通因数を約分します。
タップして手順をさらに表示してください…
ステップ 1.1.2.6.1
で因数分解します。
ステップ 1.1.2.6.2
共通因数を約分します。
タップして手順をさらに表示してください…
ステップ 1.1.2.6.2.1
で因数分解します。
ステップ 1.1.2.6.2.2
共通因数を約分します。
ステップ 1.1.2.6.2.3
式を書き換えます。
ステップ 1.1.2.6.2.4
で割ります。
ステップ 1.1.3
の値を求めます。
タップして手順をさらに表示してください…
ステップ 1.1.3.1
に対して定数なので、に対するの微分係数はです。
ステップ 1.1.3.2
のとき、であるというべき乗則を使って微分します。
ステップ 1.1.3.3
をかけます。
ステップ 1.2
二次導関数を求めます。
タップして手順をさらに表示してください…
ステップ 1.2.1
総和則では、に関する積分はです。
ステップ 1.2.2
の値を求めます。
タップして手順をさらに表示してください…
ステップ 1.2.2.1
に対して定数なので、に対するの微分係数はです。
ステップ 1.2.2.2
のとき、であるというべき乗則を使って微分します。
ステップ 1.2.2.3
をかけます。
ステップ 1.2.3
の値を求めます。
タップして手順をさらに表示してください…
ステップ 1.2.3.1
に対して定数なので、に対するの微分係数はです。
ステップ 1.2.3.2
のとき、であるというべき乗則を使って微分します。
ステップ 1.2.3.3
をかけます。
ステップ 1.3
に関するの二次導関数はです。
ステップ 2
二次導関数をと等しくし、次に方程式を解きます。
タップして手順をさらに表示してください…
ステップ 2.1
二次導関数をに等しくします。
ステップ 2.2
方程式の両辺にを足します。
ステップ 2.3
の各項をで割り、簡約します。
タップして手順をさらに表示してください…
ステップ 2.3.1
の各項をで割ります。
ステップ 2.3.2
左辺を簡約します。
タップして手順をさらに表示してください…
ステップ 2.3.2.1
の共通因数を約分します。
タップして手順をさらに表示してください…
ステップ 2.3.2.1.1
共通因数を約分します。
ステップ 2.3.2.1.2
で割ります。
ステップ 2.3.3
右辺を簡約します。
タップして手順をさらに表示してください…
ステップ 2.3.3.1
で割ります。
ステップ 3
二次導関数がである点を求めます。
タップして手順をさらに表示してください…
ステップ 3.1
に代入し、の値を求めます。
タップして手順をさらに表示してください…
ステップ 3.1.1
式の変数で置換えます。
ステップ 3.1.2
結果を簡約します。
タップして手順をさらに表示してください…
ステップ 3.1.2.1
各項を簡約します。
タップして手順をさらに表示してください…
ステップ 3.1.2.1.1
乗します。
ステップ 3.1.2.1.2
の共通因数を約分します。
タップして手順をさらに表示してください…
ステップ 3.1.2.1.2.1
の先頭の負を分子に移動させます。
ステップ 3.1.2.1.2.2
で因数分解します。
ステップ 3.1.2.1.2.3
共通因数を約分します。
ステップ 3.1.2.1.2.4
式を書き換えます。
ステップ 3.1.2.1.3
をかけます。
ステップ 3.1.2.1.4
指数を足してを掛けます。
タップして手順をさらに表示してください…
ステップ 3.1.2.1.4.1
をかけます。
タップして手順をさらに表示してください…
ステップ 3.1.2.1.4.1.1
乗します。
ステップ 3.1.2.1.4.1.2
べき乗則を利用して指数を組み合わせます。
ステップ 3.1.2.1.4.2
をたし算します。
ステップ 3.1.2.1.5
乗します。
ステップ 3.1.2.2
からを引きます。
ステップ 3.1.2.3
最終的な答えはです。
ステップ 3.2
で代入して求めた点は、です。この点は変曲点となり得ます。
ステップ 4
変曲点となりうる点の周囲でを区間に分割します。
ステップ 5
区間から値を二次導関数に代入し、二次導関数が増加関数か減少関数か判定します。
タップして手順をさらに表示してください…
ステップ 5.1
式の変数で置換えます。
ステップ 5.2
結果を簡約します。
タップして手順をさらに表示してください…
ステップ 5.2.1
をかけます。
ステップ 5.2.2
からを引きます。
ステップ 5.2.3
最終的な答えはです。
ステップ 5.3
で二次導関数はです。これは正の値なので、の区間で増加します。
なのでで増加
なのでで増加
ステップ 6
区間から値を二次導関数に代入し、二次導関数が増加関数か減少関数か判定します。
タップして手順をさらに表示してください…
ステップ 6.1
式の変数で置換えます。
ステップ 6.2
結果を簡約します。
タップして手順をさらに表示してください…
ステップ 6.2.1
をかけます。
ステップ 6.2.2
からを引きます。
ステップ 6.2.3
最終的な答えはです。
ステップ 6.3
で二次導関数はです。これは負の値なので、の区間で減少します。
なのでで減少
なのでで減少
ステップ 7
変曲点は、凹面の符号がプラスからマイナス、またはマイナスからプラスに変わる曲線上の点です。このときの変曲点はです。
ステップ 8