微分積分 例

微分方程式を解きます 2x*(dy)/(dx)=x*sin(2x)
ステップ 1
変数を分けます。
タップして手順をさらに表示してください…
ステップ 1.1
の各項をで割り、簡約します。
タップして手順をさらに表示してください…
ステップ 1.1.1
の各項をで割ります。
ステップ 1.1.2
左辺を簡約します。
タップして手順をさらに表示してください…
ステップ 1.1.2.1
の共通因数を約分します。
タップして手順をさらに表示してください…
ステップ 1.1.2.1.1
共通因数を約分します。
ステップ 1.1.2.1.2
式を書き換えます。
ステップ 1.1.2.2
の共通因数を約分します。
タップして手順をさらに表示してください…
ステップ 1.1.2.2.1
共通因数を約分します。
ステップ 1.1.2.2.2
で割ります。
ステップ 1.1.3
右辺を簡約します。
タップして手順をさらに表示してください…
ステップ 1.1.3.1
の共通因数を約分します。
タップして手順をさらに表示してください…
ステップ 1.1.3.1.1
共通因数を約分します。
ステップ 1.1.3.1.2
式を書き換えます。
ステップ 1.2
方程式を書き換えます。
ステップ 2
両辺を積分します。
タップして手順をさらに表示してください…
ステップ 2.1
各辺の積分を設定します。
ステップ 2.2
定数の法則を当てはめます。
ステップ 2.3
右辺を積分します。
タップして手順をさらに表示してください…
ステップ 2.3.1
に対して定数なので、を積分の外に移動させます。
ステップ 2.3.2
とします。次にすると、です。を利用して書き換えます。
タップして手順をさらに表示してください…
ステップ 2.3.2.1
とします。を求めます。
タップして手順をさらに表示してください…
ステップ 2.3.2.1.1
を微分します。
ステップ 2.3.2.1.2
に対して定数なので、に対するの微分係数はです。
ステップ 2.3.2.1.3
のとき、であるというべき乗則を使って微分します。
ステップ 2.3.2.1.4
をかけます。
ステップ 2.3.2.2
を利用して問題を書き換えます。
ステップ 2.3.3
をまとめます。
ステップ 2.3.4
に対して定数なので、を積分の外に移動させます。
ステップ 2.3.5
簡約します。
タップして手順をさらに表示してください…
ステップ 2.3.5.1
をかけます。
ステップ 2.3.5.2
をかけます。
ステップ 2.3.6
に関する積分はです。
ステップ 2.3.7
簡約します。
タップして手順をさらに表示してください…
ステップ 2.3.7.1
簡約します。
ステップ 2.3.7.2
をまとめます。
ステップ 2.3.8
のすべての発生をで置き換えます。
ステップ 2.3.9
項を並べ替えます。
ステップ 2.4
右辺の積分定数をとしてまとめます。