問題を入力...
微分積分 例
,
ステップ 1
ステップ 1.1
両辺にを掛けます。
ステップ 1.2
簡約します。
ステップ 1.2.1
積の可換性を利用して書き換えます。
ステップ 1.2.2
の共通因数を約分します。
ステップ 1.2.2.1
をで因数分解します。
ステップ 1.2.2.2
共通因数を約分します。
ステップ 1.2.2.3
式を書き換えます。
ステップ 1.3
方程式を書き換えます。
ステップ 2
ステップ 2.1
各辺の積分を設定します。
ステップ 2.2
べき乗則では、のに関する積分はです。
ステップ 2.3
右辺を積分します。
ステップ 2.3.1
はに対して定数なので、を積分の外に移動させます。
ステップ 2.3.2
べき乗則では、のに関する積分はです。
ステップ 2.3.3
をに書き換えます。
ステップ 2.4
右辺の積分定数をとしてまとめます。
ステップ 3
ステップ 3.1
方程式の両辺にを掛けます。
ステップ 3.2
方程式の両辺を簡約します。
ステップ 3.2.1
左辺を簡約します。
ステップ 3.2.1.1
を簡約します。
ステップ 3.2.1.1.1
とをまとめます。
ステップ 3.2.1.1.2
の共通因数を約分します。
ステップ 3.2.1.1.2.1
共通因数を約分します。
ステップ 3.2.1.1.2.2
式を書き換えます。
ステップ 3.2.2
右辺を簡約します。
ステップ 3.2.2.1
を簡約します。
ステップ 3.2.2.1.1
とをまとめます。
ステップ 3.2.2.1.2
分配則を当てはめます。
ステップ 3.2.2.1.3
の共通因数を約分します。
ステップ 3.2.2.1.3.1
の先頭の負を分子に移動させます。
ステップ 3.2.2.1.3.2
共通因数を約分します。
ステップ 3.2.2.1.3.3
式を書き換えます。
ステップ 3.3
方程式の両辺の指定した根をとり、左辺の指数を消去します。
ステップ 3.4
完全解は、解の正と負の部分の両方の計算結果です。
ステップ 3.4.1
まず、の正の数を利用し、1番目の解を求めます。
ステップ 3.4.2
次に、の負の値を利用し。2番目の解を求めます。
ステップ 3.4.3
完全解は、解の正と負の部分の両方の計算結果です。
ステップ 4
積分定数を簡約します。
ステップ 5
が初期条件で正なので、だけを考え、を求めます。をに、をに代入します。
ステップ 6
ステップ 6.1
方程式をとして書き換えます。
ステップ 6.2
方程式の左辺から根を削除するため、方程式の両辺を2乗します。
ステップ 6.3
方程式の各辺を簡約します。
ステップ 6.3.1
を利用し、をに書き換えます。
ステップ 6.3.2
左辺を簡約します。
ステップ 6.3.2.1
を簡約します。
ステップ 6.3.2.1.1
の指数を掛けます。
ステップ 6.3.2.1.1.1
べき乗則を当てはめて、指数をかけ算します。
ステップ 6.3.2.1.1.2
の共通因数を約分します。
ステップ 6.3.2.1.1.2.1
共通因数を約分します。
ステップ 6.3.2.1.1.2.2
式を書き換えます。
ステップ 6.3.2.1.2
各項を簡約します。
ステップ 6.3.2.1.2.1
を乗します。
ステップ 6.3.2.1.2.2
にをかけます。
ステップ 6.3.2.1.3
簡約します。
ステップ 6.3.3
右辺を簡約します。
ステップ 6.3.3.1
を乗します。
ステップ 6.4
を含まないすべての項を方程式の右辺に移動させます。
ステップ 6.4.1
方程式の両辺にを足します。
ステップ 6.4.2
とをたし算します。
ステップ 7
ステップ 7.1
をに代入します。
ステップ 7.2
をに書き換えます。
ステップ 7.3
とを並べ替えます。
ステップ 7.4
両項とも完全平方なので、平方の差の公式を利用して、因数分解します。このとき、であり、です。