微分積分 例

微分方程式を解きます (dy)/(dx)=(4x^3)/(2e^y)
ステップ 1
変数を分けます。
タップして手順をさらに表示してください…
ステップ 1.1
両辺にを掛けます。
ステップ 1.2
簡約します。
タップして手順をさらに表示してください…
ステップ 1.2.1
の共通因数を約分します。
タップして手順をさらに表示してください…
ステップ 1.2.1.1
で因数分解します。
ステップ 1.2.1.2
共通因数を約分します。
ステップ 1.2.1.3
式を書き換えます。
ステップ 1.2.2
の共通因数を約分します。
タップして手順をさらに表示してください…
ステップ 1.2.2.1
で因数分解します。
ステップ 1.2.2.2
共通因数を約分します。
タップして手順をさらに表示してください…
ステップ 1.2.2.2.1
で因数分解します。
ステップ 1.2.2.2.2
共通因数を約分します。
ステップ 1.2.2.2.3
式を書き換えます。
ステップ 1.2.2.2.4
で割ります。
ステップ 1.3
方程式を書き換えます。
ステップ 2
両辺を積分します。
タップして手順をさらに表示してください…
ステップ 2.1
各辺の積分を設定します。
ステップ 2.2
に関する積分はです。
ステップ 2.3
右辺を積分します。
タップして手順をさらに表示してください…
ステップ 2.3.1
に対して定数なので、を積分の外に移動させます。
ステップ 2.3.2
べき乗則では、に関する積分はです。
ステップ 2.3.3
答えを簡約します。
タップして手順をさらに表示してください…
ステップ 2.3.3.1
に書き換えます。
ステップ 2.3.3.2
簡約します。
タップして手順をさらに表示してください…
ステップ 2.3.3.2.1
をまとめます。
ステップ 2.3.3.2.2
の共通因数を約分します。
タップして手順をさらに表示してください…
ステップ 2.3.3.2.2.1
で因数分解します。
ステップ 2.3.3.2.2.2
共通因数を約分します。
タップして手順をさらに表示してください…
ステップ 2.3.3.2.2.2.1
で因数分解します。
ステップ 2.3.3.2.2.2.2
共通因数を約分します。
ステップ 2.3.3.2.2.2.3
式を書き換えます。
ステップ 2.4
右辺の積分定数をとしてまとめます。
ステップ 3
について解きます。
タップして手順をさらに表示してください…
ステップ 3.1
方程式の両辺の自然対数をとり、指数から変数を削除します。
ステップ 3.2
左辺を展開します。
タップして手順をさらに表示してください…
ステップ 3.2.1
を対数の外に移動させて、を展開します。
ステップ 3.2.2
の自然対数はです。
ステップ 3.2.3
をかけます。