微分積分 例

微分方程式を解きます (dy)/(dx)=(x^2)/(y^2) , y(0)=2
,
ステップ 1
変数を分けます。
タップして手順をさらに表示してください…
ステップ 1.1
両辺にを掛けます。
ステップ 1.2
の共通因数を約分します。
タップして手順をさらに表示してください…
ステップ 1.2.1
共通因数を約分します。
ステップ 1.2.2
式を書き換えます。
ステップ 1.3
方程式を書き換えます。
ステップ 2
両辺を積分します。
タップして手順をさらに表示してください…
ステップ 2.1
各辺の積分を設定します。
ステップ 2.2
べき乗則では、に関する積分はです。
ステップ 2.3
べき乗則では、に関する積分はです。
ステップ 2.4
右辺の積分定数をとしてまとめます。
ステップ 3
について解きます。
タップして手順をさらに表示してください…
ステップ 3.1
方程式の両辺にを掛けます。
ステップ 3.2
方程式の両辺を簡約します。
タップして手順をさらに表示してください…
ステップ 3.2.1
左辺を簡約します。
タップして手順をさらに表示してください…
ステップ 3.2.1.1
を簡約します。
タップして手順をさらに表示してください…
ステップ 3.2.1.1.1
をまとめます。
ステップ 3.2.1.1.2
の共通因数を約分します。
タップして手順をさらに表示してください…
ステップ 3.2.1.1.2.1
共通因数を約分します。
ステップ 3.2.1.1.2.2
式を書き換えます。
ステップ 3.2.2
右辺を簡約します。
タップして手順をさらに表示してください…
ステップ 3.2.2.1
を簡約します。
タップして手順をさらに表示してください…
ステップ 3.2.2.1.1
をまとめます。
ステップ 3.2.2.1.2
分配則を当てはめます。
ステップ 3.2.2.1.3
の共通因数を約分します。
タップして手順をさらに表示してください…
ステップ 3.2.2.1.3.1
共通因数を約分します。
ステップ 3.2.2.1.3.2
式を書き換えます。
ステップ 3.3
方程式の両辺の指定した根をとり、左辺の指数を消去します。
ステップ 4
積分定数を簡約します。
ステップ 5
初期条件を利用し、に、に代入しの値を求めます。
ステップ 6
について解きます。
タップして手順をさらに表示してください…
ステップ 6.1
方程式をとして書き換えます。
ステップ 6.2
方程式の左辺から根を削除するため、方程式の両辺を3乗します。
ステップ 6.3
方程式の各辺を簡約します。
タップして手順をさらに表示してください…
ステップ 6.3.1
を利用し、に書き換えます。
ステップ 6.3.2
左辺を簡約します。
タップして手順をさらに表示してください…
ステップ 6.3.2.1
を簡約します。
タップして手順をさらに表示してください…
ステップ 6.3.2.1.1
の指数を掛けます。
タップして手順をさらに表示してください…
ステップ 6.3.2.1.1.1
べき乗則を当てはめて、指数をかけ算します。
ステップ 6.3.2.1.1.2
の共通因数を約分します。
タップして手順をさらに表示してください…
ステップ 6.3.2.1.1.2.1
共通因数を約分します。
ステップ 6.3.2.1.1.2.2
式を書き換えます。
ステップ 6.3.2.1.2
を正数乗し、を得ます。
ステップ 6.3.2.1.3
をたし算します。
ステップ 6.3.2.1.4
簡約します。
ステップ 6.3.3
右辺を簡約します。
タップして手順をさらに表示してください…
ステップ 6.3.3.1
乗します。
ステップ 7
の中のに代入し簡約します。
タップして手順をさらに表示してください…
ステップ 7.1
に代入します。
ステップ 7.2
に書き換えます。
ステップ 7.3
両項とも完全立方なので、立方の和の公式を利用して、因数分解します。このとき、であり、です。
ステップ 7.4
簡約します。
タップして手順をさらに表示してください…
ステップ 7.4.1
をかけます。
ステップ 7.4.2
乗します。