問題を入力...
微分積分 例
ステップ 1
ステップ 1.1
因数をもう一度まとめます。
ステップ 1.2
両辺にを掛けます。
ステップ 1.3
簡約します。
ステップ 1.3.1
積の可換性を利用して書き換えます。
ステップ 1.3.2
とをまとめます。
ステップ 1.3.3
とをまとめます。
ステップ 1.3.4
まとめる。
ステップ 1.3.5
の共通因数を約分します。
ステップ 1.3.5.1
共通因数を約分します。
ステップ 1.3.5.2
式を書き換えます。
ステップ 1.3.6
の共通因数を約分します。
ステップ 1.3.6.1
共通因数を約分します。
ステップ 1.3.6.2
をで割ります。
ステップ 1.4
方程式を書き換えます。
ステップ 2
ステップ 2.1
各辺の積分を設定します。
ステップ 2.2
左辺を積分します。
ステップ 2.2.1
とします。次にすると、です。とを利用して書き換えます。
ステップ 2.2.1.1
とします。を求めます。
ステップ 2.2.1.1.1
を微分します。
ステップ 2.2.1.1.2
に関するの微分係数はです。
ステップ 2.2.1.2
とを利用して問題を書き換えます。
ステップ 2.2.2
べき乗則では、のに関する積分はです。
ステップ 2.2.3
のすべての発生をで置き換えます。
ステップ 2.3
右辺を積分します。
ステップ 2.3.1
はに対して定数なので、を積分の外に移動させます。
ステップ 2.3.2
べき乗則では、のに関する積分はです。
ステップ 2.3.3
答えを簡約します。
ステップ 2.3.3.1
をに書き換えます。
ステップ 2.3.3.2
簡約します。
ステップ 2.3.3.2.1
とをまとめます。
ステップ 2.3.3.2.2
との共通因数を約分します。
ステップ 2.3.3.2.2.1
をで因数分解します。
ステップ 2.3.3.2.2.2
共通因数を約分します。
ステップ 2.3.3.2.2.2.1
をで因数分解します。
ステップ 2.3.3.2.2.2.2
共通因数を約分します。
ステップ 2.3.3.2.2.2.3
式を書き換えます。
ステップ 2.3.3.2.2.2.4
をで割ります。
ステップ 2.4
右辺の積分定数をとしてまとめます。
ステップ 3
ステップ 3.1
方程式の両辺にを掛けます。
ステップ 3.2
方程式の両辺を簡約します。
ステップ 3.2.1
左辺を簡約します。
ステップ 3.2.1.1
を簡約します。
ステップ 3.2.1.1.1
とをまとめます。
ステップ 3.2.1.1.2
の共通因数を約分します。
ステップ 3.2.1.1.2.1
共通因数を約分します。
ステップ 3.2.1.1.2.2
式を書き換えます。
ステップ 3.2.2
右辺を簡約します。
ステップ 3.2.2.1
を簡約します。
ステップ 3.2.2.1.1
分配則を当てはめます。
ステップ 3.2.2.1.2
にをかけます。
ステップ 3.3
について解きます。
ステップ 3.3.1
方程式の両辺の指定した根をとり、左辺の指数を消去します。
ステップ 3.3.2
について解くために、対数の性質を利用して方程式を書き換えます。
ステップ 3.3.3
対数の定義を利用してを指数表記に書き換えます。とが正の実数でならば、はと同値です。
ステップ 3.3.4
について解きます。
ステップ 3.3.4.1
方程式をとして書き換えます。
ステップ 3.3.4.2
をで因数分解します。
ステップ 3.3.4.2.1
をで因数分解します。
ステップ 3.3.4.2.2
をで因数分解します。