微分積分 例

微分方程式を解きます (dy)/(dx)=(14xy)/(( y)^10)の自然対数
ステップ 1
変数を分けます。
タップして手順をさらに表示してください…
ステップ 1.1
因数をもう一度まとめます。
ステップ 1.2
両辺にを掛けます。
ステップ 1.3
簡約します。
タップして手順をさらに表示してください…
ステップ 1.3.1
積の可換性を利用して書き換えます。
ステップ 1.3.2
をまとめます。
ステップ 1.3.3
をまとめます。
ステップ 1.3.4
まとめる。
ステップ 1.3.5
の共通因数を約分します。
タップして手順をさらに表示してください…
ステップ 1.3.5.1
共通因数を約分します。
ステップ 1.3.5.2
式を書き換えます。
ステップ 1.3.6
の共通因数を約分します。
タップして手順をさらに表示してください…
ステップ 1.3.6.1
共通因数を約分します。
ステップ 1.3.6.2
で割ります。
ステップ 1.4
方程式を書き換えます。
ステップ 2
両辺を積分します。
タップして手順をさらに表示してください…
ステップ 2.1
各辺の積分を設定します。
ステップ 2.2
左辺を積分します。
タップして手順をさらに表示してください…
ステップ 2.2.1
とします。次にすると、です。を利用して書き換えます。
タップして手順をさらに表示してください…
ステップ 2.2.1.1
とします。を求めます。
タップして手順をさらに表示してください…
ステップ 2.2.1.1.1
を微分します。
ステップ 2.2.1.1.2
に関するの微分係数はです。
ステップ 2.2.1.2
を利用して問題を書き換えます。
ステップ 2.2.2
べき乗則では、に関する積分はです。
ステップ 2.2.3
のすべての発生をで置き換えます。
ステップ 2.3
右辺を積分します。
タップして手順をさらに表示してください…
ステップ 2.3.1
に対して定数なので、を積分の外に移動させます。
ステップ 2.3.2
べき乗則では、に関する積分はです。
ステップ 2.3.3
答えを簡約します。
タップして手順をさらに表示してください…
ステップ 2.3.3.1
に書き換えます。
ステップ 2.3.3.2
簡約します。
タップして手順をさらに表示してください…
ステップ 2.3.3.2.1
をまとめます。
ステップ 2.3.3.2.2
の共通因数を約分します。
タップして手順をさらに表示してください…
ステップ 2.3.3.2.2.1
で因数分解します。
ステップ 2.3.3.2.2.2
共通因数を約分します。
タップして手順をさらに表示してください…
ステップ 2.3.3.2.2.2.1
で因数分解します。
ステップ 2.3.3.2.2.2.2
共通因数を約分します。
ステップ 2.3.3.2.2.2.3
式を書き換えます。
ステップ 2.3.3.2.2.2.4
で割ります。
ステップ 2.4
右辺の積分定数をとしてまとめます。
ステップ 3
について解きます。
タップして手順をさらに表示してください…
ステップ 3.1
方程式の両辺にを掛けます。
ステップ 3.2
方程式の両辺を簡約します。
タップして手順をさらに表示してください…
ステップ 3.2.1
左辺を簡約します。
タップして手順をさらに表示してください…
ステップ 3.2.1.1
を簡約します。
タップして手順をさらに表示してください…
ステップ 3.2.1.1.1
をまとめます。
ステップ 3.2.1.1.2
の共通因数を約分します。
タップして手順をさらに表示してください…
ステップ 3.2.1.1.2.1
共通因数を約分します。
ステップ 3.2.1.1.2.2
式を書き換えます。
ステップ 3.2.2
右辺を簡約します。
タップして手順をさらに表示してください…
ステップ 3.2.2.1
を簡約します。
タップして手順をさらに表示してください…
ステップ 3.2.2.1.1
分配則を当てはめます。
ステップ 3.2.2.1.2
をかけます。
ステップ 3.3
について解きます。
タップして手順をさらに表示してください…
ステップ 3.3.1
方程式の両辺の指定した根をとり、左辺の指数を消去します。
ステップ 3.3.2
について解くために、対数の性質を利用して方程式を書き換えます。
ステップ 3.3.3
対数の定義を利用してを指数表記に書き換えます。が正の実数でならば、と同値です。
ステップ 3.3.4
について解きます。
タップして手順をさらに表示してください…
ステップ 3.3.4.1
方程式をとして書き換えます。
ステップ 3.3.4.2
で因数分解します。
タップして手順をさらに表示してください…
ステップ 3.3.4.2.1
で因数分解します。
ステップ 3.3.4.2.2
で因数分解します。