微分積分 例

微分方程式を解きます (dy)/(dx)=(x+1)/(e^(3y+9))
ステップ 1
変数を分けます。
タップして手順をさらに表示してください…
ステップ 1.1
両辺にを掛けます。
ステップ 1.2
の共通因数を約分します。
タップして手順をさらに表示してください…
ステップ 1.2.1
共通因数を約分します。
ステップ 1.2.2
式を書き換えます。
ステップ 1.3
方程式を書き換えます。
ステップ 2
両辺を積分します。
タップして手順をさらに表示してください…
ステップ 2.1
各辺の積分を設定します。
ステップ 2.2
左辺を積分します。
タップして手順をさらに表示してください…
ステップ 2.2.1
とします。次にすると、です。を利用して書き換えます。
タップして手順をさらに表示してください…
ステップ 2.2.1.1
とします。を求めます。
タップして手順をさらに表示してください…
ステップ 2.2.1.1.1
を微分します。
ステップ 2.2.1.1.2
総和則では、に関する積分はです。
ステップ 2.2.1.1.3
の値を求めます。
タップして手順をさらに表示してください…
ステップ 2.2.1.1.3.1
に対して定数なので、に対するの微分係数はです。
ステップ 2.2.1.1.3.2
のとき、であるというべき乗則を使って微分します。
ステップ 2.2.1.1.3.3
をかけます。
ステップ 2.2.1.1.4
定数の規則を使って微分します。
タップして手順をさらに表示してください…
ステップ 2.2.1.1.4.1
について定数なので、についての微分係数はです。
ステップ 2.2.1.1.4.2
をたし算します。
ステップ 2.2.1.2
を利用して問題を書き換えます。
ステップ 2.2.2
をまとめます。
ステップ 2.2.3
に対して定数なので、を積分の外に移動させます。
ステップ 2.2.4
に関する積分はです。
ステップ 2.2.5
簡約します。
ステップ 2.2.6
のすべての発生をで置き換えます。
ステップ 2.3
右辺を積分します。
タップして手順をさらに表示してください…
ステップ 2.3.1
単一積分を複数積分に分割します。
ステップ 2.3.2
べき乗則では、に関する積分はです。
ステップ 2.3.3
定数の法則を当てはめます。
ステップ 2.3.4
簡約します。
ステップ 2.4
右辺の積分定数をとしてまとめます。
ステップ 3
について解きます。
タップして手順をさらに表示してください…
ステップ 3.1
方程式の両辺にを掛けます。
ステップ 3.2
方程式の両辺を簡約します。
タップして手順をさらに表示してください…
ステップ 3.2.1
左辺を簡約します。
タップして手順をさらに表示してください…
ステップ 3.2.1.1
を簡約します。
タップして手順をさらに表示してください…
ステップ 3.2.1.1.1
をまとめます。
ステップ 3.2.1.1.2
の共通因数を約分します。
タップして手順をさらに表示してください…
ステップ 3.2.1.1.2.1
共通因数を約分します。
ステップ 3.2.1.1.2.2
式を書き換えます。
ステップ 3.2.2
右辺を簡約します。
タップして手順をさらに表示してください…
ステップ 3.2.2.1
を簡約します。
タップして手順をさらに表示してください…
ステップ 3.2.2.1.1
をまとめます。
ステップ 3.2.2.1.2
分配則を当てはめます。
ステップ 3.2.2.1.3
をまとめます。
ステップ 3.3
方程式の両辺の自然対数をとり、指数から変数を削除します。
ステップ 3.4
左辺を展開します。
タップして手順をさらに表示してください…
ステップ 3.4.1
を対数の外に移動させて、を展開します。
ステップ 3.4.2
の自然対数はです。
ステップ 3.4.3
をかけます。
ステップ 3.5
方程式の両辺からを引きます。
ステップ 3.6
の各項をで割り、簡約します。
タップして手順をさらに表示してください…
ステップ 3.6.1
の各項をで割ります。
ステップ 3.6.2
左辺を簡約します。
タップして手順をさらに表示してください…
ステップ 3.6.2.1
の共通因数を約分します。
タップして手順をさらに表示してください…
ステップ 3.6.2.1.1
共通因数を約分します。
ステップ 3.6.2.1.2
で割ります。
ステップ 3.6.3
右辺を簡約します。
タップして手順をさらに表示してください…
ステップ 3.6.3.1
で割ります。
ステップ 4
積分定数を簡約します。