問題を入力...
微分積分 例
ステップ 1
ステップ 1.1
について解きます。
ステップ 1.1.1
方程式の両辺からを引きます。
ステップ 1.1.2
を含まないすべての項を方程式の右辺に移動させます。
ステップ 1.1.2.1
方程式の両辺にを足します。
ステップ 1.1.2.2
方程式の両辺にを足します。
ステップ 1.1.3
の各項をで割り、簡約します。
ステップ 1.1.3.1
の各項をで割ります。
ステップ 1.1.3.2
左辺を簡約します。
ステップ 1.1.3.2.1
の共通因数を約分します。
ステップ 1.1.3.2.1.1
共通因数を約分します。
ステップ 1.1.3.2.1.2
をで割ります。
ステップ 1.1.3.3
右辺を簡約します。
ステップ 1.1.3.3.1
各項を簡約します。
ステップ 1.1.3.3.1.1
分子に分母の逆数を掛けます。
ステップ 1.1.3.3.1.2
にをかけます。
ステップ 1.1.3.3.1.3
をの左に移動させます。
ステップ 1.1.3.3.1.4
分子に分母の逆数を掛けます。
ステップ 1.1.3.3.1.5
の共通因数を約分します。
ステップ 1.1.3.3.1.5.1
をで因数分解します。
ステップ 1.1.3.3.1.5.2
共通因数を約分します。
ステップ 1.1.3.3.1.5.3
式を書き換えます。
ステップ 1.2
因数分解。
ステップ 1.2.1
を公分母のある分数として書くために、を掛けます。
ステップ 1.2.2
の適した因数を掛けて、各式をを公分母とする式で書きます。
ステップ 1.2.2.1
にをかけます。
ステップ 1.2.2.2
の因数を並べ替えます。
ステップ 1.2.3
公分母の分子をまとめます。
ステップ 1.2.4
をの左に移動させます。
ステップ 1.3
両辺にを掛けます。
ステップ 1.4
の共通因数を約分します。
ステップ 1.4.1
をで因数分解します。
ステップ 1.4.2
共通因数を約分します。
ステップ 1.4.3
式を書き換えます。
ステップ 1.5
方程式を書き換えます。
ステップ 2
ステップ 2.1
各辺の積分を設定します。
ステップ 2.2
べき乗則では、のに関する積分はです。
ステップ 2.3
右辺を積分します。
ステップ 2.3.1
はに対して定数なので、を積分の外に移動させます。
ステップ 2.3.2
単一積分を複数積分に分割します。
ステップ 2.3.3
定数の法則を当てはめます。
ステップ 2.3.4
はに対して定数なので、を積分の外に移動させます。
ステップ 2.3.5
べき乗則では、のに関する積分はです。
ステップ 2.3.6
簡約します。
ステップ 2.4
右辺の積分定数をとしてまとめます。
ステップ 3
ステップ 3.1
方程式の両辺にを掛けます。
ステップ 3.2
方程式の両辺を簡約します。
ステップ 3.2.1
左辺を簡約します。
ステップ 3.2.1.1
を簡約します。
ステップ 3.2.1.1.1
とをまとめます。
ステップ 3.2.1.1.2
の共通因数を約分します。
ステップ 3.2.1.1.2.1
共通因数を約分します。
ステップ 3.2.1.1.2.2
式を書き換えます。
ステップ 3.2.2
右辺を簡約します。
ステップ 3.2.2.1
を簡約します。
ステップ 3.2.2.1.1
各項を簡約します。
ステップ 3.2.2.1.1.1
分配則を当てはめます。
ステップ 3.2.2.1.1.2
とをまとめます。
ステップ 3.2.2.1.1.3
とをまとめます。
ステップ 3.2.2.1.2
分配則を当てはめます。
ステップ 3.2.2.1.3
簡約します。
ステップ 3.2.2.1.3.1
の共通因数を約分します。
ステップ 3.2.2.1.3.1.1
共通因数を約分します。
ステップ 3.2.2.1.3.1.2
式を書き換えます。
ステップ 3.2.2.1.3.2
の共通因数を約分します。
ステップ 3.2.2.1.3.2.1
共通因数を約分します。
ステップ 3.2.2.1.3.2.2
式を書き換えます。
ステップ 3.3
方程式の両辺の指定した根をとり、左辺の指数を消去します。
ステップ 3.4
完全解は、解の正と負の部分の両方の計算結果です。
ステップ 3.4.1
まず、の正の数を利用し、1番目の解を求めます。
ステップ 3.4.2
次に、の負の値を利用し。2番目の解を求めます。
ステップ 3.4.3
完全解は、解の正と負の部分の両方の計算結果です。
ステップ 4
積分定数を簡約します。