問題を入力...
微分積分 例
ステップ 1
ステップ 1.1
に関してを微分します。
ステップ 1.2
のとき、はであるというべき乗則を使って微分します。
ステップ 2
ステップ 2.1
に関してを微分します。
ステップ 2.2
総和則では、のに関する積分はです。
ステップ 2.3
の値を求めます。
ステップ 2.3.1
はに対して定数なので、に対するの微分係数はです。
ステップ 2.3.2
のとき、はであるというべき乗則を使って微分します。
ステップ 2.3.3
にをかけます。
ステップ 2.4
定数の規則を使って微分します。
ステップ 2.4.1
はについて定数なので、についての微分係数はです。
ステップ 2.4.2
とをたし算します。
ステップ 3
ステップ 3.1
をに、をに代入します。
ステップ 3.2
両辺が等しいことが示されているので、この方程式は恒等式です。
は恒等式です。
は恒等式です。
ステップ 4
はの積分と等しいとします。
ステップ 5
ステップ 5.1
定数の法則を当てはめます。
ステップ 6
の積分は積分定数を含むので、をで置き換えることができます。
ステップ 7
を設定します。
ステップ 8
ステップ 8.1
に関してを微分します。
ステップ 8.2
総和則では、のに関する積分はです。
ステップ 8.3
の値を求めます。
ステップ 8.3.1
はに対して定数なので、に対するの微分係数はです。
ステップ 8.3.2
のとき、はであるというべき乗則を使って微分します。
ステップ 8.3.3
をの左に移動させます。
ステップ 8.4
の微分係数はであるという関数の規則を使って微分します。
ステップ 8.5
項を並べ替えます。
ステップ 9
ステップ 9.1
を含まないすべての項を方程式の右辺に移動させます。
ステップ 9.1.1
方程式の両辺からを引きます。
ステップ 9.1.2
の反対側の項を組み合わせます。
ステップ 9.1.2.1
からを引きます。
ステップ 9.1.2.2
とをたし算します。
ステップ 10
ステップ 10.1
の両辺を積分します。
ステップ 10.2
の値を求めます。
ステップ 10.3
のに関する積分はです。
ステップ 11
のに代入します。