微分積分 例

微分方程式を解きます (dy)/(dx)=4/(1+x^2) , y(1)=pi/2
,
ステップ 1
方程式を書き換えます。
ステップ 2
両辺を積分します。
タップして手順をさらに表示してください…
ステップ 2.1
各辺の積分を設定します。
ステップ 2.2
定数の法則を当てはめます。
ステップ 2.3
右辺を積分します。
タップして手順をさらに表示してください…
ステップ 2.3.1
に対して定数なので、を積分の外に移動させます。
ステップ 2.3.2
に書き換えます。
ステップ 2.3.3
に関する積分はです。
ステップ 2.3.4
簡約します。
ステップ 2.4
右辺の積分定数をとしてまとめます。
ステップ 3
初期条件を利用し、に、に代入しの値を求めます。
ステップ 4
について解きます。
タップして手順をさらに表示してください…
ステップ 4.1
方程式をとして書き換えます。
ステップ 4.2
左辺を簡約します。
タップして手順をさらに表示してください…
ステップ 4.2.1
各項を簡約します。
タップして手順をさらに表示してください…
ステップ 4.2.1.1
の厳密値はです。
ステップ 4.2.1.2
の共通因数を約分します。
タップして手順をさらに表示してください…
ステップ 4.2.1.2.1
共通因数を約分します。
ステップ 4.2.1.2.2
式を書き換えます。
ステップ 4.3
を含まないすべての項を方程式の右辺に移動させます。
タップして手順をさらに表示してください…
ステップ 4.3.1
方程式の両辺からを引きます。
ステップ 4.3.2
を公分母のある分数として書くために、を掛けます。
ステップ 4.3.3
をまとめます。
ステップ 4.3.4
公分母の分子をまとめます。
ステップ 4.3.5
分子を簡約します。
タップして手順をさらに表示してください…
ステップ 4.3.5.1
をかけます。
ステップ 4.3.5.2
からを引きます。
ステップ 4.3.6
分数の前に負数を移動させます。
ステップ 5
の中のに代入し簡約します。
タップして手順をさらに表示してください…
ステップ 5.1
に代入します。