問題を入力...
微分積分 例
ステップ 1
ステップ 1.1
両辺にを掛けます。
ステップ 1.2
簡約します。
ステップ 1.2.1
積の可換性を利用して書き換えます。
ステップ 1.2.2
とをまとめます。
ステップ 1.2.3
の共通因数を約分します。
ステップ 1.2.3.1
をで因数分解します。
ステップ 1.2.3.2
共通因数を約分します。
ステップ 1.2.3.3
式を書き換えます。
ステップ 1.2.4
負の指数法則を利用して式を書き換えます。
ステップ 1.2.5
とをまとめます。
ステップ 1.3
方程式を書き換えます。
ステップ 2
ステップ 2.1
各辺の積分を設定します。
ステップ 2.2
左辺を積分します。
ステップ 2.2.1
式を簡約します。
ステップ 2.2.1.1
の指数を否定し、分母の外に移動させます。
ステップ 2.2.1.2
簡約します。
ステップ 2.2.1.2.1
の指数を掛けます。
ステップ 2.2.1.2.1.1
べき乗則を当てはめて、指数をかけ算します。
ステップ 2.2.1.2.1.2
を掛けます。
ステップ 2.2.1.2.1.2.1
にをかけます。
ステップ 2.2.1.2.1.2.2
にをかけます。
ステップ 2.2.1.2.2
にをかけます。
ステップ 2.2.2
のに関する積分はです。
ステップ 2.3
右辺を積分します。
ステップ 2.3.1
はに対して定数なので、を積分の外に移動させます。
ステップ 2.3.2
指数の基本法則を当てはめます。
ステップ 2.3.2.1
を乗して分母の外に移動させます。
ステップ 2.3.2.2
の指数を掛けます。
ステップ 2.3.2.2.1
べき乗則を当てはめて、指数をかけ算します。
ステップ 2.3.2.2.2
にをかけます。
ステップ 2.3.3
べき乗則では、のに関する積分はです。
ステップ 2.3.4
答えを簡約します。
ステップ 2.3.4.1
をに書き換えます。
ステップ 2.3.4.2
簡約します。
ステップ 2.3.4.2.1
にをかけます。
ステップ 2.3.4.2.2
とをまとめます。
ステップ 2.3.4.2.3
分数の前に負数を移動させます。
ステップ 2.4
右辺の積分定数をとしてまとめます。
ステップ 3
ステップ 3.1
方程式の両辺の自然対数をとり、指数から変数を削除します。
ステップ 3.2
左辺を展開します。
ステップ 3.2.1
を対数の外に移動させて、を展開します。
ステップ 3.2.2
の自然対数はです。
ステップ 3.2.3
にをかけます。