微分積分 例

微分方程式を解きます (x+1)(dy)/(dx)+y=x^2-1
ステップ 1
方程式の左辺は項の微分係数の結果か確認します。
タップして手順をさらに表示してください…
ステップ 1.1
およびのとき、であるという積の法則を使って微分します。
ステップ 1.2
に書き換えます。
ステップ 1.3
総和則では、に関する積分はです。
ステップ 1.4
のとき、であるというべき乗則を使って微分します。
ステップ 1.5
について定数なので、についての微分係数はです。
ステップ 1.6
をたし算します。
ステップ 1.7
に代入します。
ステップ 1.8
を並べ替えます。
ステップ 1.9
をかけます。
ステップ 2
左辺を積を微分した結果として書き換えます。
ステップ 3
各辺の積分を設定します。
ステップ 4
左辺を積分します。
ステップ 5
右辺を積分します。
タップして手順をさらに表示してください…
ステップ 5.1
単一積分を複数積分に分割します。
ステップ 5.2
べき乗則では、に関する積分はです。
ステップ 5.3
定数の法則を当てはめます。
ステップ 5.4
簡約します。
ステップ 6
の各項をで割り、簡約します。
タップして手順をさらに表示してください…
ステップ 6.1
の各項をで割ります。
ステップ 6.2
左辺を簡約します。
タップして手順をさらに表示してください…
ステップ 6.2.1
の共通因数を約分します。
タップして手順をさらに表示してください…
ステップ 6.2.1.1
共通因数を約分します。
ステップ 6.2.1.2
で割ります。
ステップ 6.3
右辺を簡約します。
タップして手順をさらに表示してください…
ステップ 6.3.1
各項を簡約します。
タップして手順をさらに表示してください…
ステップ 6.3.1.1
をまとめます。
ステップ 6.3.1.2
分子に分母の逆数を掛けます。
ステップ 6.3.1.3
をかけます。
ステップ 6.3.1.4
分数の前に負数を移動させます。
ステップ 6.3.2
を公分母のある分数として書くために、を掛けます。
ステップ 6.3.3
の適した因数を掛けて、各式をを公分母とする式で書きます。
タップして手順をさらに表示してください…
ステップ 6.3.3.1
をかけます。
ステップ 6.3.3.2
の因数を並べ替えます。
ステップ 6.3.4
公分母の分子をまとめます。
ステップ 6.3.5
分子を簡約します。
タップして手順をさらに表示してください…
ステップ 6.3.5.1
で因数分解します。
タップして手順をさらに表示してください…
ステップ 6.3.5.1.1
で因数分解します。
ステップ 6.3.5.1.2
で因数分解します。
ステップ 6.3.5.1.3
で因数分解します。
ステップ 6.3.5.2
をかけます。
ステップ 6.3.6
を公分母のある分数として書くために、を掛けます。
ステップ 6.3.7
の適した因数を掛けて、各式をを公分母とする式で書きます。
タップして手順をさらに表示してください…
ステップ 6.3.7.1
をかけます。
ステップ 6.3.7.2
の因数を並べ替えます。
ステップ 6.3.8
公分母の分子をまとめます。
ステップ 6.3.9
分子を簡約します。
タップして手順をさらに表示してください…
ステップ 6.3.9.1
分配則を当てはめます。
ステップ 6.3.9.2
指数を足してを掛けます。
タップして手順をさらに表示してください…
ステップ 6.3.9.2.1
をかけます。
タップして手順をさらに表示してください…
ステップ 6.3.9.2.1.1
乗します。
ステップ 6.3.9.2.1.2
べき乗則を利用して指数を組み合わせます。
ステップ 6.3.9.2.2
をたし算します。
ステップ 6.3.9.3
の左に移動させます。
ステップ 6.3.9.4
の左に移動させます。