問題を入力...
微分積分 例
,
ステップ 1
ステップ 1.1
およびのとき、はであるという積の法則を使って微分します。
ステップ 1.2
をに書き換えます。
ステップ 1.3
のとき、はであるというべき乗則を使って微分します。
ステップ 1.4
をに代入します。
ステップ 1.5
とを並べ替えます。
ステップ 1.6
にをかけます。
ステップ 2
左辺を積を微分した結果として書き換えます。
ステップ 3
各辺の積分を設定します。
ステップ 4
左辺を積分します。
ステップ 5
ステップ 5.1
はに対して定数なので、を積分の外に移動させます。
ステップ 5.2
べき乗則では、のに関する積分はです。
ステップ 5.3
答えを簡約します。
ステップ 5.3.1
をに書き換えます。
ステップ 5.3.2
簡約します。
ステップ 5.3.2.1
とをまとめます。
ステップ 5.3.2.2
との共通因数を約分します。
ステップ 5.3.2.2.1
をで因数分解します。
ステップ 5.3.2.2.2
共通因数を約分します。
ステップ 5.3.2.2.2.1
をで因数分解します。
ステップ 5.3.2.2.2.2
共通因数を約分します。
ステップ 5.3.2.2.2.3
式を書き換えます。
ステップ 5.3.2.2.2.4
をで割ります。
ステップ 6
ステップ 6.1
の各項をで割ります。
ステップ 6.2
左辺を簡約します。
ステップ 6.2.1
の共通因数を約分します。
ステップ 6.2.1.1
共通因数を約分します。
ステップ 6.2.1.2
をで割ります。
ステップ 6.3
右辺を簡約します。
ステップ 6.3.1
との共通因数を約分します。
ステップ 6.3.1.1
をで因数分解します。
ステップ 6.3.1.2
共通因数を約分します。
ステップ 6.3.1.2.1
を乗します。
ステップ 6.3.1.2.2
をで因数分解します。
ステップ 6.3.1.2.3
共通因数を約分します。
ステップ 6.3.1.2.4
式を書き換えます。
ステップ 6.3.1.2.5
をで割ります。
ステップ 7
初期条件を利用し、のをに、をに代入しの値を求めます。
ステップ 8
ステップ 8.1
方程式をとして書き換えます。
ステップ 8.2
各項を簡約します。
ステップ 8.2.1
にをかけます。
ステップ 8.2.2
をで割ります。
ステップ 8.3
を含まないすべての項を方程式の右辺に移動させます。
ステップ 8.3.1
方程式の両辺からを引きます。
ステップ 8.3.2
からを引きます。
ステップ 9
ステップ 9.1
をに代入します。