問題を入力...
微分積分 例
ステップ 1
ステップ 1.1
に関してを微分します。
ステップ 1.2
微分します。
ステップ 1.2.1
総和則では、のに関する積分はです。
ステップ 1.2.2
のとき、はであるというべき乗則を使って微分します。
ステップ 1.2.3
はについて定数なので、についての微分係数はです。
ステップ 1.3
の値を求めます。
ステップ 1.3.1
はに対して定数なので、に対するの微分係数はです。
ステップ 1.3.2
のとき、はであるというべき乗則を使って微分します。
ステップ 1.3.3
にをかけます。
ステップ 1.4
簡約します。
ステップ 1.4.1
とをたし算します。
ステップ 1.4.2
項を並べ替えます。
ステップ 2
ステップ 2.1
に関してを微分します。
ステップ 2.2
のとき、はであるというべき乗則を使って微分します。
ステップ 3
ステップ 3.1
をに、をに代入します。
ステップ 3.2
方程式の左辺が右辺に等しくないので、方程式は恒等式ではありません。
は恒等式ではありません。
は恒等式ではありません。
ステップ 4
ステップ 4.1
をに代入します。
ステップ 4.2
をに代入します。
ステップ 4.3
をに代入します。
ステップ 4.3.1
をに代入します。
ステップ 4.3.2
分子を簡約します。
ステップ 4.3.2.1
からを引きます。
ステップ 4.3.2.2
とをたし算します。
ステップ 4.3.3
の共通因数を約分します。
ステップ 4.3.3.1
共通因数を約分します。
ステップ 4.3.3.2
をで割ります。
ステップ 4.4
積分因子を求めます。
ステップ 5
ステップ 5.1
のに関する積分はです。
ステップ 5.2
答えを簡約します。
ステップ 5.2.1
簡約します。
ステップ 5.2.2
指数関数と対数関数は逆関数です。
ステップ 6
ステップ 6.1
にをかけます。
ステップ 6.2
各項を簡約します。
ステップ 6.2.1
正弦と余弦に関してを書き換えます。
ステップ 6.2.2
を掛けます。
ステップ 6.2.2.1
とをまとめます。
ステップ 6.2.2.2
とをまとめます。
ステップ 6.3
分配則を当てはめます。
ステップ 6.4
の共通因数を約分します。
ステップ 6.4.1
共通因数を約分します。
ステップ 6.4.2
式を書き換えます。
ステップ 6.5
にをかけます。
ステップ 7
はの積分と等しいとします。
ステップ 8
ステップ 8.1
定数の法則を当てはめます。
ステップ 9
の積分は積分定数を含むので、をで置き換えることができます。
ステップ 10
を設定します。
ステップ 11
ステップ 11.1
に関してを微分します。
ステップ 11.2
総和則では、のに関する積分はです。
ステップ 11.3
の値を求めます。
ステップ 11.3.1
はに対して定数なので、に対するの微分係数はです。
ステップ 11.3.2
およびのとき、はであるという積の法則を使って微分します。
ステップ 11.3.3
に関するの微分係数はです。
ステップ 11.3.4
のとき、はであるというべき乗則を使って微分します。
ステップ 11.3.5
にをかけます。
ステップ 11.4
の微分係数はであるという関数の規則を使って微分します。
ステップ 11.5
簡約します。
ステップ 11.5.1
分配則を当てはめます。
ステップ 11.5.2
項を並べ替えます。
ステップ 12
ステップ 12.1
を含まないすべての項を方程式の右辺に移動させます。
ステップ 12.1.1
方程式の両辺からを引きます。
ステップ 12.1.2
方程式の両辺からを引きます。
ステップ 12.1.3
の反対側の項を組み合わせます。
ステップ 12.1.3.1
とについて因数を並べ替えます。
ステップ 12.1.3.2
からを引きます。
ステップ 12.1.3.3
とをたし算します。
ステップ 12.1.3.4
からを引きます。
ステップ 12.1.3.5
とをたし算します。
ステップ 13
ステップ 13.1
の両辺を積分します。
ステップ 13.2
の値を求めます。
ステップ 13.3
はに対して定数なので、を積分の外に移動させます。
ステップ 13.4
とならば、公式を利用して部分積分します。
ステップ 13.5
はに対して定数なので、を積分の外に移動させます。
ステップ 13.6
簡約します。
ステップ 13.6.1
にをかけます。
ステップ 13.6.2
にをかけます。
ステップ 13.7
のに関する積分はです。
ステップ 13.8
をに書き換えます。
ステップ 14
のに代入します。
ステップ 15
ステップ 15.1
各項を簡約します。
ステップ 15.1.1
分配則を当てはめます。
ステップ 15.1.2
を掛けます。
ステップ 15.1.2.1
にをかけます。
ステップ 15.1.2.2
にをかけます。
ステップ 15.2
の因数を並べ替えます。