問題を入力...
微分積分 例
ステップ 1
ステップ 1.1
の各項をで割り、簡約します。
ステップ 1.1.1
の各項をで割ります。
ステップ 1.1.2
左辺を簡約します。
ステップ 1.1.2.1
の共通因数を約分します。
ステップ 1.1.2.1.1
共通因数を約分します。
ステップ 1.1.2.1.2
式を書き換えます。
ステップ 1.1.2.2
の共通因数を約分します。
ステップ 1.1.2.2.1
共通因数を約分します。
ステップ 1.1.2.2.2
をで割ります。
ステップ 1.2
因数をもう一度まとめます。
ステップ 1.3
両辺にを掛けます。
ステップ 1.4
簡約します。
ステップ 1.4.1
まとめる。
ステップ 1.4.2
の共通因数を約分します。
ステップ 1.4.2.1
をで因数分解します。
ステップ 1.4.2.2
共通因数を約分します。
ステップ 1.4.2.3
式を書き換えます。
ステップ 1.4.3
にをかけます。
ステップ 1.5
方程式を書き換えます。
ステップ 2
ステップ 2.1
各辺の積分を設定します。
ステップ 2.2
べき乗則では、のに関する積分はです。
ステップ 2.3
右辺を積分します。
ステップ 2.3.1
式を簡約します。
ステップ 2.3.1.1
の指数を否定し、分母の外に移動させます。
ステップ 2.3.1.2
の指数を掛けます。
ステップ 2.3.1.2.1
べき乗則を当てはめて、指数をかけ算します。
ステップ 2.3.1.2.2
を掛けます。
ステップ 2.3.1.2.2.1
にをかけます。
ステップ 2.3.1.2.2.2
にをかけます。
ステップ 2.3.2
とならば、公式を利用して部分積分します。
ステップ 2.3.3
のに関する積分はです。
ステップ 2.3.4
簡約します。
ステップ 2.3.5
項を並べ替えます。
ステップ 2.4
右辺の積分定数をとしてまとめます。
ステップ 3
ステップ 3.1
方程式の両辺にを掛けます。
ステップ 3.2
方程式の両辺を簡約します。
ステップ 3.2.1
左辺を簡約します。
ステップ 3.2.1.1
を簡約します。
ステップ 3.2.1.1.1
とをまとめます。
ステップ 3.2.1.1.2
の共通因数を約分します。
ステップ 3.2.1.1.2.1
共通因数を約分します。
ステップ 3.2.1.1.2.2
式を書き換えます。
ステップ 3.2.2
右辺を簡約します。
ステップ 3.2.2.1
を簡約します。
ステップ 3.2.2.1.1
分配則を当てはめます。
ステップ 3.2.2.1.2
にをかけます。
ステップ 3.2.2.1.3
の因数を並べ替えます。
ステップ 3.3
方程式の両辺の指定した根をとり、左辺の指数を消去します。
ステップ 3.4
をで因数分解します。
ステップ 3.4.1
をで因数分解します。
ステップ 3.4.2
をで因数分解します。
ステップ 3.4.3
をで因数分解します。
ステップ 3.4.4
をで因数分解します。
ステップ 3.4.5
をで因数分解します。
ステップ 3.5
完全解は、解の正と負の部分の両方の計算結果です。
ステップ 3.5.1
まず、の正の数を利用し、1番目の解を求めます。
ステップ 3.5.2
次に、の負の値を利用し。2番目の解を求めます。
ステップ 3.5.3
完全解は、解の正と負の部分の両方の計算結果です。