基礎数学 例

Решить относительно q q^2+2q+7=-q+25
ステップ 1
を含むすべての項を方程式の左辺に移動させます。
タップして手順をさらに表示してください…
ステップ 1.1
方程式の両辺にを足します。
ステップ 1.2
をたし算します。
ステップ 2
方程式の両辺からを引きます。
ステップ 3
からを引きます。
ステップ 4
たすき掛けを利用してを因数分解します。
タップして手順をさらに表示してください…
ステップ 4.1
の形式を考えます。積がで和がである整数の組を求めます。このとき、その積がで、その和がです。
ステップ 4.2
この整数を利用して因数分解の形を書きます。
ステップ 5
方程式の左辺の個々の因数がと等しいならば、式全体はと等しくなります。
ステップ 6
に等しくし、を解きます。
タップして手順をさらに表示してください…
ステップ 6.1
に等しいとします。
ステップ 6.2
方程式の両辺にを足します。
ステップ 7
に等しくし、を解きます。
タップして手順をさらに表示してください…
ステップ 7.1
に等しいとします。
ステップ 7.2
方程式の両辺からを引きます。
ステップ 8
最終解はを真にするすべての値です。