問題を入力...
基礎数学 例
ステップ 1
ステップ 1.1
値のリストの最小公分母を求めることは、それらの値の分母の最小公倍数を求めることと同じです。
ステップ 1.2
Since contains both numbers and variables, there are four steps to find the LCM. Find LCM for the numeric, variable, and compound variable parts. Then, multiply them all together.
の最小公倍数を求めるステップ:
1. 数値部分の最小公倍数を求めます。
2. 変数部分の最小公倍数を求めます。
3. 複合変数部分の最小公倍数を求めます。
4. 各最小公倍数をかけます。
ステップ 1.3
最小公倍数はすべての数を割り切る最小の正の数です。
1. 各数値の素因数を記入してください。
2. 各因数に、いずれかの値で発生する最大回数をかけてください。
ステップ 1.4
数は、それ自身である正の因数を1つだけもつので、素数ではありません。
素数ではありません
ステップ 1.5
の素因数はです。
ステップ 1.5.1
にはとの因数があります。
ステップ 1.5.2
にはとの因数があります。
ステップ 1.6
を掛けます。
ステップ 1.6.1
にをかけます。
ステップ 1.6.2
にをかけます。
ステップ 1.7
の因数はそのものです。
は回発生します。
ステップ 1.8
の最小公倍数は、すべての素因数がいずれかの項に出現する回数の最大数を掛けた結果です。
ステップ 1.9
の因数はそのものです。
は回発生します。
ステップ 1.10
の最小公倍数は、すべての因数がいずれかの項に出現する回数の最大数を掛けた結果です。
ステップ 1.11
ある数の最小公倍数はその数が因数分解された最小の数です。
ステップ 2
ステップ 2.1
の各項にを掛けます。
ステップ 2.2
左辺を簡約します。
ステップ 2.2.1
各項を簡約します。
ステップ 2.2.1.1
積の可換性を利用して書き換えます。
ステップ 2.2.1.2
を掛けます。
ステップ 2.2.1.2.1
とをまとめます。
ステップ 2.2.1.2.2
にをかけます。
ステップ 2.2.1.3
の共通因数を約分します。
ステップ 2.2.1.3.1
をで因数分解します。
ステップ 2.2.1.3.2
共通因数を約分します。
ステップ 2.2.1.3.3
式を書き換えます。
ステップ 2.2.1.4
積の可換性を利用して書き換えます。
ステップ 2.2.1.5
とをまとめます。
ステップ 2.2.1.6
の共通因数を約分します。
ステップ 2.2.1.6.1
共通因数を約分します。
ステップ 2.2.1.6.2
式を書き換えます。
ステップ 2.2.1.7
分配則を当てはめます。
ステップ 2.2.1.8
にをかけます。
ステップ 2.2.2
とをたし算します。
ステップ 2.3
右辺を簡約します。
ステップ 2.3.1
項を簡約します。
ステップ 2.3.1.1
の共通因数を約分します。
ステップ 2.3.1.1.1
をで因数分解します。
ステップ 2.3.1.1.2
共通因数を約分します。
ステップ 2.3.1.1.3
式を書き換えます。
ステップ 2.3.1.2
分配則を当てはめます。
ステップ 2.3.1.3
式を簡約します。
ステップ 2.3.1.3.1
にをかけます。
ステップ 2.3.1.3.2
をの左に移動させます。
ステップ 2.3.2
をに書き換えます。
ステップ 2.3.3
両辺を掛けて簡約します。
ステップ 2.3.3.1
分配則を当てはめます。
ステップ 2.3.3.2
にをかけます。
ステップ 3
ステップ 3.1
が方程式の右辺にあるので、両辺を入れ替えると左辺になります。
ステップ 3.2
を含むすべての項を方程式の左辺に移動させます。
ステップ 3.2.1
方程式の両辺からを引きます。
ステップ 3.2.2
からを引きます。
ステップ 3.3
方程式の両辺にを足します。
ステップ 3.4
群による因数分解。
ステップ 3.4.1
の形の多項式について、積がで和がである2項の和に中央の項を書き換えます。
ステップ 3.4.1.1
をで因数分解します。
ステップ 3.4.1.2
をプラスに書き換える
ステップ 3.4.1.3
分配則を当てはめます。
ステップ 3.4.2
各群から最大公約数を因数分解します。
ステップ 3.4.2.1
前の2項と後ろの2項をまとめます。
ステップ 3.4.2.2
各群から最大公約数を因数分解します。
ステップ 3.4.3
最大公約数を因数分解して、多項式を因数分解します。
ステップ 3.5
方程式の左辺の個々の因数がと等しいならば、式全体はと等しくなります。
ステップ 3.6
をに等しくし、を解きます。
ステップ 3.6.1
がに等しいとします。
ステップ 3.6.2
についてを解きます。
ステップ 3.6.2.1
方程式の両辺にを足します。
ステップ 3.6.2.2
の各項をで割り、簡約します。
ステップ 3.6.2.2.1
の各項をで割ります。
ステップ 3.6.2.2.2
左辺を簡約します。
ステップ 3.6.2.2.2.1
の共通因数を約分します。
ステップ 3.6.2.2.2.1.1
共通因数を約分します。
ステップ 3.6.2.2.2.1.2
をで割ります。
ステップ 3.7
をに等しくし、を解きます。
ステップ 3.7.1
がに等しいとします。
ステップ 3.7.2
方程式の両辺にを足します。
ステップ 3.8
最終解はを真にするすべての値です。
ステップ 4
結果は複数の形で表すことができます。
完全形:
10進法形式: