問題を入力...
代数 例
ステップ 1
方程式をとして書き換えます。
ステップ 2
ステップ 2.1
べき乗則を利用して指数を組み合わせます。
ステップ 2.2
を公分母のある分数として書くために、を掛けます。
ステップ 2.3
を公分母のある分数として書くために、を掛けます。
ステップ 2.4
の適した因数を掛けて、各式をを公分母とする式で書きます。
ステップ 2.4.1
にをかけます。
ステップ 2.4.2
にをかけます。
ステップ 2.4.3
にをかけます。
ステップ 2.4.4
にをかけます。
ステップ 2.5
公分母の分子をまとめます。
ステップ 2.6
とをたし算します。
ステップ 3
底が同じなので、2つの式は指数も等しい場合に限り等しいです。
ステップ 4
ステップ 4.1
方程式の項の最小公分母を求めます。
ステップ 4.1.1
値のリストの最小公分母を求めることは、それらの値の分母の最小公倍数を求めることと同じです。
ステップ 4.1.2
Since contains both numbers and variables, there are two steps to find the LCM. Find LCM for the numeric part then find LCM for the variable part .
ステップ 4.1.3
最小公倍数はすべての数を割り切る最小の正の数です。
1. 各数値の素因数を記入してください。
2. 各因数に、いずれかの値で発生する最大回数をかけてください。
ステップ 4.1.4
数は、それ自身である正の因数を1つだけもつので、素数ではありません。
素数ではありません
ステップ 4.1.5
の素因数はです。
ステップ 4.1.5.1
にはとの因数があります。
ステップ 4.1.5.2
にはとの因数があります。
ステップ 4.1.6
を掛けます。
ステップ 4.1.6.1
にをかけます。
ステップ 4.1.6.2
にをかけます。
ステップ 4.1.7
の因数はそのものです。
は回発生します。
ステップ 4.1.8
の最小公倍数は、すべての素因数がいずれかの項に出現する回数の最大数を掛けた結果です。
ステップ 4.1.9
の最小公倍数は数値部分に変数部分を掛けたものです。
ステップ 4.2
の各項にを掛け、分数を消去します。
ステップ 4.2.1
の各項にを掛けます。
ステップ 4.2.2
左辺を簡約します。
ステップ 4.2.2.1
積の可換性を利用して書き換えます。
ステップ 4.2.2.2
とをまとめます。
ステップ 4.2.2.3
の共通因数を約分します。
ステップ 4.2.2.3.1
共通因数を約分します。
ステップ 4.2.2.3.2
式を書き換えます。
ステップ 4.2.3
右辺を簡約します。
ステップ 4.2.3.1
の共通因数を約分します。
ステップ 4.2.3.1.1
をで因数分解します。
ステップ 4.2.3.1.2
共通因数を約分します。
ステップ 4.2.3.1.3
式を書き換えます。
ステップ 4.3
方程式を解きます。
ステップ 4.3.1
方程式をとして書き換えます。
ステップ 4.3.2
の各項をで割り、簡約します。
ステップ 4.3.2.1
の各項をで割ります。
ステップ 4.3.2.2
左辺を簡約します。
ステップ 4.3.2.2.1
の共通因数を約分します。
ステップ 4.3.2.2.1.1
共通因数を約分します。
ステップ 4.3.2.2.1.2
をで割ります。
ステップ 5
の関数として書き換えるために、方程式を書き、等号の一辺にが単独であり、もう一辺にだけを含む式が来るようにします。