代数 例

x切片とy切片を求める f(x)=2x^3+8x^2-2x-8
ステップ 1
x切片を求めます。
タップして手順をさらに表示してください…
ステップ 1.1
x切片を求めるために、に代入しを解きます。
ステップ 1.2
方程式を解きます。
タップして手順をさらに表示してください…
ステップ 1.2.1
方程式をとして書き換えます。
ステップ 1.2.2
方程式の左辺を因数分解します。
タップして手順をさらに表示してください…
ステップ 1.2.2.1
で因数分解します。
タップして手順をさらに表示してください…
ステップ 1.2.2.1.1
で因数分解します。
ステップ 1.2.2.1.2
で因数分解します。
ステップ 1.2.2.1.3
で因数分解します。
ステップ 1.2.2.1.4
で因数分解します。
ステップ 1.2.2.1.5
で因数分解します。
ステップ 1.2.2.1.6
で因数分解します。
ステップ 1.2.2.1.7
で因数分解します。
ステップ 1.2.2.2
各群から最大公約数を因数分解します。
タップして手順をさらに表示してください…
ステップ 1.2.2.2.1
前の2項と後ろの2項をまとめます。
ステップ 1.2.2.2.2
各群から最大公約数を因数分解します。
ステップ 1.2.2.3
最大公約数を因数分解して、多項式を因数分解します。
ステップ 1.2.2.4
に書き換えます。
ステップ 1.2.2.5
因数分解。
タップして手順をさらに表示してください…
ステップ 1.2.2.5.1
因数分解。
タップして手順をさらに表示してください…
ステップ 1.2.2.5.1.1
両項とも完全平方なので、平方の差の公式を利用して、因数分解します。このとき、であり、です。
ステップ 1.2.2.5.1.2
不要な括弧を削除します。
ステップ 1.2.2.5.2
不要な括弧を削除します。
ステップ 1.2.3
方程式の左辺の個々の因数がと等しいならば、式全体はと等しくなります。
ステップ 1.2.4
に等しくし、を解きます。
タップして手順をさらに表示してください…
ステップ 1.2.4.1
に等しいとします。
ステップ 1.2.4.2
方程式の両辺からを引きます。
ステップ 1.2.5
に等しくし、を解きます。
タップして手順をさらに表示してください…
ステップ 1.2.5.1
に等しいとします。
ステップ 1.2.5.2
方程式の両辺からを引きます。
ステップ 1.2.6
に等しくし、を解きます。
タップして手順をさらに表示してください…
ステップ 1.2.6.1
に等しいとします。
ステップ 1.2.6.2
方程式の両辺にを足します。
ステップ 1.2.7
最終解はを真にするすべての値です。
ステップ 1.3
点形式のx切片です。
x切片:
x切片:
ステップ 2
y切片を求めます。
タップして手順をさらに表示してください…
ステップ 2.1
y切片を求めるために、に代入しを解きます。
ステップ 2.2
方程式を解きます。
タップして手順をさらに表示してください…
ステップ 2.2.1
括弧を削除します。
ステップ 2.2.2
括弧を削除します。
ステップ 2.2.3
括弧を削除します。
ステップ 2.2.4
を簡約します。
タップして手順をさらに表示してください…
ステップ 2.2.4.1
各項を簡約します。
タップして手順をさらに表示してください…
ステップ 2.2.4.1.1
を正数乗し、を得ます。
ステップ 2.2.4.1.2
をかけます。
ステップ 2.2.4.1.3
を正数乗し、を得ます。
ステップ 2.2.4.1.4
をかけます。
ステップ 2.2.4.1.5
をかけます。
ステップ 2.2.4.2
足し算と引き算で簡約します。
タップして手順をさらに表示してください…
ステップ 2.2.4.2.1
をたし算します。
ステップ 2.2.4.2.2
をたし算します。
ステップ 2.2.4.2.3
からを引きます。
ステップ 2.3
点形式のy切片です。
y切片:
y切片:
ステップ 3
交点を一覧にします。
x切片:
y切片:
ステップ 4