問題を入力...
代数 例
ステップ 1
ステップ 1.1
をで因数分解します。
ステップ 1.2
をで因数分解します。
ステップ 1.3
をで因数分解します。
ステップ 2
ステップ 2.1
の形式を考えます。積がで和がである整数の組を求めます。このとき、その積がで、その和がです。
ステップ 2.2
この整数を利用して因数分解の形を書きます。
ステップ 3
値のリストの最小公分母を求めることは、それらの値の分母の最小公倍数を求めることと同じです。
ステップ 4
Since contains both numbers and variables, there are four steps to find the LCM. Find LCM for the numeric, variable, and compound variable parts. Then, multiply them all together.
の最小公倍数を求めるステップ:
1. 数値部分の最小公倍数を求めます。
2. 変数部分の最小公倍数を求めます。
3. 複合変数部分の最小公倍数を求めます。
4. 各最小公倍数をかけます。
ステップ 5
最小公倍数はすべての数を割り切る最小の正の数です。
1. 各数値の素因数を記入してください。
2. 各因数に、いずれかの値で発生する最大回数をかけてください。
ステップ 6
数は、それ自身である正の因数を1つだけもつので、素数ではありません。
素数ではありません
ステップ 7
の最小公倍数は、すべての素因数がいずれかの数に出現する回数の最大数を掛けた結果です。
ステップ 8
の因数はそのものです。
は回発生します。
ステップ 9
の最小公倍数は、すべての素因数がいずれかの項に出現する回数の最大数を掛けた結果です。
ステップ 10
の因数はそのものです。
は回発生します。
ステップ 11
の因数はそのものです。
は回発生します。
ステップ 12
の最小公倍数は、すべての因数がいずれかの項に出現する回数の最大数を掛けた結果です。
ステップ 13
ある数の最小公倍数はその数が因数分解された最小の数です。