代数 例

二次方程式の根の公式を利用して解く -1=15/x-(11x+5)/(x^2)
ステップ 1
変数を含むすべての項を方程式の左辺に移動させ、簡約します。
タップして手順をさらに表示してください…
ステップ 1.1
右辺を簡約します。
タップして手順をさらに表示してください…
ステップ 1.1.1
を簡約します。
タップして手順をさらに表示してください…
ステップ 1.1.1.1
各項を簡約します。
タップして手順をさらに表示してください…
ステップ 1.1.1.1.1
分数を2つの分数に分割します。
ステップ 1.1.1.1.2
の共通因数を約分します。
タップして手順をさらに表示してください…
ステップ 1.1.1.1.2.1
で因数分解します。
ステップ 1.1.1.1.2.2
共通因数を約分します。
タップして手順をさらに表示してください…
ステップ 1.1.1.1.2.2.1
で因数分解します。
ステップ 1.1.1.1.2.2.2
共通因数を約分します。
ステップ 1.1.1.1.2.2.3
式を書き換えます。
ステップ 1.1.1.1.3
分配則を当てはめます。
ステップ 1.1.1.2
分数をまとめます。
タップして手順をさらに表示してください…
ステップ 1.1.1.2.1
公分母の分子をまとめます。
ステップ 1.1.1.2.2
式を簡約します。
タップして手順をさらに表示してください…
ステップ 1.1.1.2.2.1
からを引きます。
ステップ 1.1.1.2.2.2
分数の前に負数を移動させます。
ステップ 1.2
すべての式を方程式の左辺に移動させます。
タップして手順をさらに表示してください…
ステップ 1.2.1
方程式の両辺からを引きます。
ステップ 1.2.2
方程式の両辺にを足します。
ステップ 2
方程式の項の最小公分母を求めます。
タップして手順をさらに表示してください…
ステップ 2.1
値のリストの最小公分母を求めることは、それらの値の分母の最小公倍数を求めることと同じです。
ステップ 2.2
Since contains both numbers and variables, there are two steps to find the LCM. Find LCM for the numeric part then find LCM for the variable part .
ステップ 2.3
最小公倍数はすべての数を割り切る最小の正の数です。
1. 各数値の素因数を記入してください。
2. 各因数に、いずれかの値で発生する最大回数をかけてください。
ステップ 2.4
は、それ自身である正の因数を1つだけもつので、素数ではありません。
素数ではありません
ステップ 2.5
の最小公倍数は、すべての素因数がいずれかの数に出現する回数の最大数を掛けた結果です。
ステップ 2.6
の因数はそのものです。
回発生します。
ステップ 2.7
の因数はです。これは倍したものです。
回発生します。
ステップ 2.8
の最小公倍数は、すべての素因数がいずれかの項に出現する回数の最大数を掛けた結果です。
ステップ 2.9
をかけます。
ステップ 3
の各項にを掛け、分数を消去します。
タップして手順をさらに表示してください…
ステップ 3.1
の各項にを掛けます。
ステップ 3.2
左辺を簡約します。
タップして手順をさらに表示してください…
ステップ 3.2.1
各項を簡約します。
タップして手順をさらに表示してください…
ステップ 3.2.1.1
の共通因数を約分します。
タップして手順をさらに表示してください…
ステップ 3.2.1.1.1
の先頭の負を分子に移動させます。
ステップ 3.2.1.1.2
で因数分解します。
ステップ 3.2.1.1.3
共通因数を約分します。
ステップ 3.2.1.1.4
式を書き換えます。
ステップ 3.2.1.2
の共通因数を約分します。
タップして手順をさらに表示してください…
ステップ 3.2.1.2.1
共通因数を約分します。
ステップ 3.2.1.2.2
式を書き換えます。
ステップ 3.3
右辺を簡約します。
タップして手順をさらに表示してください…
ステップ 3.3.1
をかけます。
ステップ 4
方程式を解きます。
タップして手順をさらに表示してください…
ステップ 4.1
方程式の左辺を因数分解します。
タップして手順をさらに表示してください…
ステップ 4.1.1
で因数分解します。
タップして手順をさらに表示してください…
ステップ 4.1.1.1
で因数分解します。
ステップ 4.1.1.2
で因数分解します。
ステップ 4.1.1.3
に書き換えます。
ステップ 4.1.1.4
で因数分解します。
ステップ 4.1.1.5
で因数分解します。
ステップ 4.1.2
因数分解。
タップして手順をさらに表示してください…
ステップ 4.1.2.1
たすき掛けを利用してを因数分解します。
タップして手順をさらに表示してください…
ステップ 4.1.2.1.1
の形式を考えます。積がで和がである整数の組を求めます。このとき、その積がで、その和がです。
ステップ 4.1.2.1.2
この整数を利用して因数分解の形を書きます。
ステップ 4.1.2.2
不要な括弧を削除します。
ステップ 4.2
方程式の左辺の個々の因数がと等しいならば、式全体はと等しくなります。
ステップ 4.3
に等しくし、を解きます。
タップして手順をさらに表示してください…
ステップ 4.3.1
に等しいとします。
ステップ 4.3.2
方程式の両辺にを足します。
ステップ 4.4
に等しくし、を解きます。
タップして手順をさらに表示してください…
ステップ 4.4.1
に等しいとします。
ステップ 4.4.2
方程式の両辺からを引きます。
ステップ 4.5
最終解はを真にするすべての値です。