問題を入力...
代数 例
ステップ 1
ステップ 1.1
の形式を考えます。積がで和がである整数の組を求めます。このとき、その積がで、その和がです。
ステップ 1.2
この整数を利用して因数分解の形を書きます。
ステップ 2
ステップ 2.1
をに書き換えます。
ステップ 2.2
両項とも完全平方なので、平方の差の公式を利用して、因数分解します。このとき、であり、です。
ステップ 3
ステップ 3.1
をで因数分解します。
ステップ 3.1.1
をで因数分解します。
ステップ 3.1.2
をで因数分解します。
ステップ 3.1.3
をで因数分解します。
ステップ 3.2
項を簡約します。
ステップ 3.2.1
の共通因数を約分します。
ステップ 3.2.1.1
をで因数分解します。
ステップ 3.2.1.2
共通因数を約分します。
ステップ 3.2.1.3
式を書き換えます。
ステップ 3.2.2
の共通因数を約分します。
ステップ 3.2.2.1
をで因数分解します。
ステップ 3.2.2.2
共通因数を約分します。
ステップ 3.2.2.3
式を書き換えます。
ステップ 3.2.3
分配則を当てはめます。
ステップ 3.2.4
とをまとめます。
ステップ 3.2.5
とをまとめます。
ステップ 3.2.6
公分母の分子をまとめます。
ステップ 3.3
各項を簡約します。
ステップ 3.3.1
分配則を当てはめます。
ステップ 3.3.2
にをかけます。
ステップ 3.3.3
をの左に移動させます。
ステップ 3.3.4
分配則を当てはめます。
ステップ 3.3.5
にをかけます。
ステップ 3.4
とをたし算します。
ステップ 4
ステップ 4.1
の形式を考えます。積がで和がである整数の組を求めます。このとき、その積がで、その和がです。
ステップ 4.2
この整数を利用して因数分解の形を書きます。