代数 例

グラフ化する f(x)=-x^2
f(x)=-x2
ステップ 1
与えられた放物線の特性を求めます。
タップして手順をさらに表示してください…
ステップ 1.1
方程式を頂点形で書き換えます。
タップして手順をさらに表示してください…
ステップ 1.1.1
-x2の平方完成。
タップして手順をさらに表示してください…
ステップ 1.1.1.1
ax2+bx+cを利用して、abcの値を求めます。
a=-1
b=0
c=0
ステップ 1.1.1.2
放物線の標準形を考えます。
a(x+d)2+e
ステップ 1.1.1.3
公式d=b2aを利用してdの値を求めます。
タップして手順をさらに表示してください…
ステップ 1.1.1.3.1
abの値を公式d=b2aに代入します。
d=02-1
ステップ 1.1.1.3.2
右辺を簡約します。
タップして手順をさらに表示してください…
ステップ 1.1.1.3.2.1
02の共通因数を約分します。
タップして手順をさらに表示してください…
ステップ 1.1.1.3.2.1.1
20で因数分解します。
d=2(0)2-1
ステップ 1.1.1.3.2.1.2
0-1の分母からマイナス1を移動させます。
d=-10
d=-10
ステップ 1.1.1.3.2.2
-10-0に書き換えます。
d=-0
ステップ 1.1.1.3.2.3
-10をかけます。
d=0
d=0
d=0
ステップ 1.1.1.4
公式e=c-b24aを利用してeの値を求めます。
タップして手順をさらに表示してください…
ステップ 1.1.1.4.1
cb、およびaの値を公式e=c-b24aに代入します。
e=0-024-1
ステップ 1.1.1.4.2
右辺を簡約します。
タップして手順をさらに表示してください…
ステップ 1.1.1.4.2.1
各項を簡約します。
タップして手順をさらに表示してください…
ステップ 1.1.1.4.2.1.1
0を正数乗し、0を得ます。
e=0-04-1
ステップ 1.1.1.4.2.1.2
4-1をかけます。
e=0-0-4
ステップ 1.1.1.4.2.1.3
0-4で割ります。
e=0-0
ステップ 1.1.1.4.2.1.4
-10をかけます。
e=0+0
e=0+0
ステップ 1.1.1.4.2.2
00をたし算します。
e=0
e=0
e=0
ステップ 1.1.1.5
ad、およびeの値を頂点形-x2に代入します。
-x2
-x2
ステップ 1.1.2
yは新しい右辺と等しいとします。
y=-x2
y=-x2
ステップ 1.2
頂点形、y=a(x-h)2+k、を利用してahkの値を求めます。
a=-1
h=0
k=0
ステップ 1.3
aの値が負なので、放物線は下に開です。
下に開く
ステップ 1.4
頂点(h,k)を求めます。
(0,0)
ステップ 1.5
頂点から焦点までの距離pを求めます。
タップして手順をさらに表示してください…
ステップ 1.5.1
次の式を利用して放物線の交点から焦点までの距離を求めます。
14a
ステップ 1.5.2
aの値を公式に代入します。
14-1
ステップ 1.5.3
1-1の共通因数を約分します。
タップして手順をさらに表示してください…
ステップ 1.5.3.1
1-1(-1)に書き換えます。
-1(-1)4-1
ステップ 1.5.3.2
分数の前に負数を移動させます。
-14
-14
-14
ステップ 1.6
焦点を求めます。
タップして手順をさらに表示してください…
ステップ 1.6.1
放物線の焦点は、放物線が上下に開の場合、pをy座標kに加えて求められます。
(h,k+p)
ステップ 1.6.2
hp、およびkの既知数を公式に代入し、簡約します。
(0,-14)
(0,-14)
ステップ 1.7
交点と焦点を通る線を求め、対称軸を求めます。
x=0
ステップ 1.8
準線を求めます。
タップして手順をさらに表示してください…
ステップ 1.8.1
放物線の準線は、放物線が上下に開の場合、頂点のy座標kからpを引いて求められる水平線です。
y=k-p
ステップ 1.8.2
pkの既知数を公式に代入し、簡約します。
y=14
y=14
ステップ 1.9
放物線の性質を利用して放物線を分析しグラフに描きます。
方向:下に開
頂点:(0,0)
焦点:(0,-14)
対称軸:x=0
準線:y=14
方向:下に開
頂点:(0,0)
焦点:(0,-14)
対称軸:x=0
準線:y=14
ステップ 2
x値をいくつか選択し、方程式に代入し対応するy値を求めます。x値は頂点の周りで選択しなければなりません。
タップして手順をさらに表示してください…
ステップ 2.1
式の変数x-1で置換えます。
f(-1)=-(-1)2
ステップ 2.2
結果を簡約します。
タップして手順をさらに表示してください…
ステップ 2.2.1
指数を足して-1(-1)2を掛けます。
タップして手順をさらに表示してください…
ステップ 2.2.1.1
-1(-1)2をかけます。
タップして手順をさらに表示してください…
ステップ 2.2.1.1.1
-11乗します。
f(-1)=(-1)(-1)2
ステップ 2.2.1.1.2
べき乗則aman=am+nを利用して指数を組み合わせます。
f(-1)=(-1)1+2
f(-1)=(-1)1+2
ステップ 2.2.1.2
12をたし算します。
f(-1)=(-1)3
f(-1)=(-1)3
ステップ 2.2.2
-13乗します。
f(-1)=-1
ステップ 2.2.3
最終的な答えは-1です。
-1
-1
ステップ 2.3
x=-1におけるy値は-1です。
y=-1
ステップ 2.4
式の変数x-2で置換えます。
f(-2)=-(-2)2
ステップ 2.5
結果を簡約します。
タップして手順をさらに表示してください…
ステップ 2.5.1
-22乗します。
f(-2)=-14
ステップ 2.5.2
-14をかけます。
f(-2)=-4
ステップ 2.5.3
最終的な答えは-4です。
-4
-4
ステップ 2.6
x=-2におけるy値は-4です。
y=-4
ステップ 2.7
式の変数x1で置換えます。
f(1)=-(1)2
ステップ 2.8
結果を簡約します。
タップして手順をさらに表示してください…
ステップ 2.8.1
1のすべての数の累乗は1です。
f(1)=-11
ステップ 2.8.2
-11をかけます。
f(1)=-1
ステップ 2.8.3
最終的な答えは-1です。
-1
-1
ステップ 2.9
x=1におけるy値は-1です。
y=-1
ステップ 2.10
式の変数x2で置換えます。
f(2)=-(2)2
ステップ 2.11
結果を簡約します。
タップして手順をさらに表示してください…
ステップ 2.11.1
22乗します。
f(2)=-14
ステップ 2.11.2
-14をかけます。
f(2)=-4
ステップ 2.11.3
最終的な答えは-4です。
-4
-4
ステップ 2.12
x=2におけるy値は-4です。
y=-4
ステップ 2.13
放物線の特性と選択した点を利用し、放物線をグラフに描きます。
xy-2-4-1-1001-12-4
xy-2-4-1-1001-12-4
ステップ 3
放物線の特性と選択した点を利用し、放物線をグラフに描きます。
方向:下に開
頂点:(0,0)
焦点:(0,-14)
対称軸:x=0
準線:y=14
xy-2-4-1-1001-12-4
ステップ 4
image of graph
f(x)=-x2
(
(
)
)
|
|
[
[
]
]
7
7
8
8
9
9
4
4
5
5
6
6
/
/
^
^
×
×
>
>
1
1
2
2
3
3
-
-
+
+
÷
÷
<
<
π
π
,
,
0
0
.
.
%
%
=
=
 [x2  12  π  xdx ]