問題を入力...
代数 例
y=-25x+10y=−25x+10と(1,7)(1,7)
ステップ 1
ステップ 1.1
傾き切片型で書き換えます。
ステップ 1.1.1
傾き切片型はy=mx+by=mx+bです。ここでmmが傾き、bbがy切片です。
y=mx+by=mx+b
ステップ 1.1.2
右辺を簡約します。
ステップ 1.1.2.1
各項を簡約します。
ステップ 1.1.2.1.1
xxと2525をまとめます。
y=-x⋅25+10y=−x⋅25+10
ステップ 1.1.2.1.2
22をxxの左に移動させます。
y=-2x5+10y=−2x5+10
y=-2x5+10y=−2x5+10
y=-2x5+10y=−2x5+10
ステップ 1.1.3
y=mx+by=mx+b形で書きます。
ステップ 1.1.3.1
項を並べ替えます。
y=-(25x)+10y=−(25x)+10
ステップ 1.1.3.2
括弧を削除します。
y=-25x+10y=−25x+10
y=-25x+10y=−25x+10
y=-25x+10y=−25x+10
ステップ 1.2
傾き切片型を利用すると、傾きは-25−25です。
m=-25m=−25
m=-25m=−25
ステップ 2
垂直線の方程式は、元の傾きの負の逆数の傾きをもたなければなりません。
m垂直=-1-25
ステップ 3
ステップ 3.1
1と-1の共通因数を約分します。
ステップ 3.1.1
1を-1(-1)に書き換えます。
m垂直=--1⋅-1-25
ステップ 3.1.2
分数の前に負数を移動させます。
m垂直=125
m垂直=125
ステップ 3.2
分子に分母の逆数を掛けます。
m垂直=1(52)
ステップ 3.3
52に1をかけます。
m垂直=52
ステップ 3.4
--52を掛けます。
ステップ 3.4.1
-1に-1をかけます。
m垂直=1(52)
ステップ 3.4.2
52に1をかけます。
m垂直=52
m垂直=52
m垂直=52
ステップ 4
ステップ 4.1
傾き52と与えられた点(1,7)を利用して、点傾き型y-y1=m(x-x1)のx1とy1に代入します。それは傾きの方程式m=y2-y1x2-x1から導かれます。
y-(7)=52⋅(x-(1))
ステップ 4.2
方程式を簡約し点傾き型にします。
y-7=52⋅(x-1)
y-7=52⋅(x-1)
ステップ 5
ステップ 5.1
yについて解きます。
ステップ 5.1.1
52⋅(x-1)を簡約します。
ステップ 5.1.1.1
書き換えます。
y-7=0+0+52⋅(x-1)
ステップ 5.1.1.2
0を加えて簡約します。
y-7=52⋅(x-1)
ステップ 5.1.1.3
分配則を当てはめます。
y-7=52x+52⋅-1
ステップ 5.1.1.4
52とxをまとめます。
y-7=5x2+52⋅-1
ステップ 5.1.1.5
52⋅-1を掛けます。
ステップ 5.1.1.5.1
52と-1をまとめます。
y-7=5x2+5⋅-12
ステップ 5.1.1.5.2
5に-1をかけます。
y-7=5x2+-52
y-7=5x2+-52
ステップ 5.1.1.6
分数の前に負数を移動させます。
y-7=5x2-52
y-7=5x2-52
ステップ 5.1.2
yを含まないすべての項を方程式の右辺に移動させます。
ステップ 5.1.2.1
方程式の両辺に7を足します。
y=5x2-52+7
ステップ 5.1.2.2
7を公分母のある分数として書くために、22を掛けます。
y=5x2-52+7⋅22
ステップ 5.1.2.3
7と22をまとめます。
y=5x2-52+7⋅22
ステップ 5.1.2.4
公分母の分子をまとめます。
y=5x2+-5+7⋅22
ステップ 5.1.2.5
分子を簡約します。
ステップ 5.1.2.5.1
7に2をかけます。
y=5x2+-5+142
ステップ 5.1.2.5.2
-5と14をたし算します。
y=5x2+92
y=5x2+92
y=5x2+92
y=5x2+92
ステップ 5.2
項を並べ替えます。
y=52x+92
y=52x+92
ステップ 6