問題を入力...
代数 例
ステップ 1
がに等しいとします。
ステップ 2
ステップ 2.1
方程式の両辺にを掛けます。
ステップ 2.2
方程式の両辺を簡約します。
ステップ 2.2.1
左辺を簡約します。
ステップ 2.2.1.1
を簡約します。
ステップ 2.2.1.1.1
分配法則(FOIL法)を使ってを展開します。
ステップ 2.2.1.1.1.1
分配則を当てはめます。
ステップ 2.2.1.1.1.2
分配則を当てはめます。
ステップ 2.2.1.1.1.3
分配則を当てはめます。
ステップ 2.2.1.1.2
項を簡約します。
ステップ 2.2.1.1.2.1
の反対側の項を組み合わせます。
ステップ 2.2.1.1.2.1.1
とについて因数を並べ替えます。
ステップ 2.2.1.1.2.1.2
とをたし算します。
ステップ 2.2.1.1.2.1.3
とをたし算します。
ステップ 2.2.1.1.2.2
各項を簡約します。
ステップ 2.2.1.1.2.2.1
にをかけます。
ステップ 2.2.1.1.2.2.2
にをかけます。
ステップ 2.2.1.1.2.3
両辺を掛けて簡約します。
ステップ 2.2.1.1.2.3.1
分配則を当てはめます。
ステップ 2.2.1.1.2.3.2
分配則を当てはめます。
ステップ 2.2.1.1.3
を掛けます。
ステップ 2.2.1.1.3.1
とをまとめます。
ステップ 2.2.1.1.3.2
とをまとめます。
ステップ 2.2.1.1.4
を掛けます。
ステップ 2.2.1.1.4.1
にをかけます。
ステップ 2.2.1.1.4.2
とをまとめます。
ステップ 2.2.1.1.4.3
とをまとめます。
ステップ 2.2.1.1.5
公分母の分子をまとめます。
ステップ 2.2.1.1.6
の因数を並べ替えます。
ステップ 2.2.1.1.7
の共通因数を約分します。
ステップ 2.2.1.1.7.1
をで因数分解します。
ステップ 2.2.1.1.7.2
共通因数を約分します。
ステップ 2.2.1.1.7.3
式を書き換えます。
ステップ 2.2.1.1.8
分配則を当てはめます。
ステップ 2.2.1.1.9
を掛けます。
ステップ 2.2.1.1.9.1
にをかけます。
ステップ 2.2.1.1.9.2
にをかけます。
ステップ 2.2.1.1.10
にをかけます。
ステップ 2.2.2
右辺を簡約します。
ステップ 2.2.2.1
にをかけます。
ステップ 2.3
方程式の左辺を因数分解します。
ステップ 2.3.1
をで因数分解します。
ステップ 2.3.1.1
をで因数分解します。
ステップ 2.3.1.2
をで因数分解します。
ステップ 2.3.1.3
をで因数分解します。
ステップ 2.3.2
をに書き換えます。
ステップ 2.3.3
因数分解。
ステップ 2.3.3.1
両項とも完全平方なので、平方の差の公式を利用して、因数分解します。このとき、であり、です。
ステップ 2.3.3.2
不要な括弧を削除します。
ステップ 2.4
方程式の左辺の個々の因数がと等しいならば、式全体はと等しくなります。
ステップ 2.5
をに等しくし、を解きます。
ステップ 2.5.1
がに等しいとします。
ステップ 2.5.2
についてを解きます。
ステップ 2.5.2.1
がに等しいとします。
ステップ 2.5.2.2
方程式の両辺からを引きます。
ステップ 2.6
をに等しくし、を解きます。
ステップ 2.6.1
がに等しいとします。
ステップ 2.6.2
方程式の両辺からを引きます。
ステップ 2.7
をに等しくし、を解きます。
ステップ 2.7.1
がに等しいとします。
ステップ 2.7.2
方程式の両辺にを足します。
ステップ 2.8
最終解はを真にするすべての値です。
ステップ 3